rtic/Notes.md
2019-09-28 21:32:48 +02:00

6.1 KiB

Notes for lock optimizaiton

Idea

We are reading basepri independently if and only if we are actually changing basepri.

To dump generated assembly:

> arm-none-eabi-objdump target/thumbv7m-none-eabi/release/examples/lockopt -d > lockopt.asm

Extend cortex-m-rtfm/src/export::Priority with an additional fields to store init_logic (priority of the task) and old_basepri_hw. The latter field is initially None on creation.

// Newtype over `Cell` that forbids mutation through a shared reference
pub struct Priority {
    init_logic: u8,
    current_logic: Cell<u8>,
    #[cfg(armv7m)]
    old_basepri_hw: Cell<Option<u8>>,
}

impl Priority {
    #[inline(always)]
    pub unsafe fn new(value: u8) -> Self {
        Priority {
            init_logic: value,
            current_logic: Cell::new(value),
            old_basepri_hw: Cell::new(None),
        }
    }

    #[inline(always)]
    fn set_logic(&self, value: u8) {
        self.current_logic.set(value)
    }

    #[inline(always)]
    fn get_logic(&self) -> u8 {
        self.current_logic.get()
    }

    #[inline(always)]
    fn get_init_logic(&self) -> u8 {
        self.init_logic
    }

    #[cfg(armv7m)]
    #[inline(always)]
    fn get_old_basepri_hw(&self) -> Option<u8> {
        self.old_basepri_hw.get()
    }

    #[cfg(armv7m)]
    #[inline(always)]
    fn set_old_basepri_hw(&self, value: u8) {
        self.old_basepri_hw.set(Some(value));
    }
}

The corresponding lock is implemented as follows:

#[cfg(armv7m)]
#[inline(always)]
pub unsafe fn lock<T, R>(
    ptr: *mut T,
    priority: &Priority,
    ceiling: u8,
    nvic_prio_bits: u8,
    f: impl FnOnce(&mut T) -> R,
) -> R {
    let current = priority.get_logic();

    if current < ceiling {
        if ceiling == (1 << nvic_prio_bits) {
            priority.set_logic(u8::max_value());
            let r = interrupt::free(|_| f(&mut *ptr));
            priority.set_logic(current);
            r
        } else {
            match priority.get_old_basepri_hw() {
                None => priority.set_old_basepri_hw(basepri::read()),
                _ => (),
            };
            priority.set_logic(ceiling);
            basepri::write(logical2hw(ceiling, nvic_prio_bits));
            let r = f(&mut *ptr);
            if current == priority.get_init_logic() {
                basepri::write(priority.get_old_basepri_hw().unwrap());
            } else {
                basepri::write(logical2hw(priority.get_logic(), nvic_prio_bits));
            }
            priority.set_logic(current);
            r
        }
    } else {
        f(&mut *ptr)
    }
}

The highest priority is achieved through an interrupt_free and does not at all affect the BASEPRI.

For the normal case, on enter we check if the BASEPRI register has been read, if not we read it and update priority. On exit we check if are to restore a logical priority (inside a nested lock) or to restore the BASEPRI (previously read).

Safety

We can safely unwrap the get_old_basepri_hw: Option<u8> as the path leading up to the unwrap passes an update to Some or was already Some. Updating get_old_basepri_hw is monotonic, the API offers no way of making get_old_basepri_hw into None (besides new).

Moreover new is the only public function of Priority, thus we are exposing nothing dangerous to the user.

Implementation

Implementation mainly regards two files, the rtfm/src/export.rs (discussed above) and macros/src/codegen/hardware_tasks.rs. For the latter the task dispatcher is updated as follows:

        ...
        const_app.push(quote!(
            #[allow(non_snake_case)]
            #[no_mangle]
            #section
            #cfg_core
            unsafe fn #symbol() {
                const PRIORITY: u8 = #priority;
                #let_instant
                crate::#name(
                    #locals_new
                    #name::Context::new(&rtfm::export::Priority::new(PRIORITY) #instant)
                    );
            }
        ));
        ...

Basically we create Priority (on stack) and use that to create a Context. The beauty is that LLVM is completely optimazing out the data structure (and related code), but taking into account its implications to control flow. Thus, the locks AND initial reading of BASEPRI will be optimized at compile time at Zero cost.

Overall, using this approach, we don't need a trampoline (run). We reduce the overhead by at least two machine instructions (additional reading/writing of BASEPRI) for each interrupt. It also reduces the register preasure (as less information needs to be stored).

Evaluation

The examples/lockopt.rs shows that locks are effectively optimized out.

00000132 <GPIOB>:
 132:	b510      	push	{r4, lr}
 134:	f000 f893 	bl	25e <__basepri_r>
 138:	4604      	mov	r4, r0
 13a:	20a0      	movs	r0, #160	; 0xa0
 13c:	f000 f892 	bl	264 <__basepri_w>
 140:	f240 0000 	movw	r0, #0
 144:	f2c2 0000 	movt	r0, #8192	; 0x2000
 148:	6801      	ldr	r1, [r0, #0]
 14a:	3101      	adds	r1, #1
 14c:	6001      	str	r1, [r0, #0]
 14e:	4620      	mov	r0, r4
 150:	e8bd 4010 	ldmia.w	sp!, {r4, lr}
 154:	f000 b886 	b.w	264 <__basepri_w>

00000158 <GPIOC>:
 158:	f240 0000 	movw	r0, #0
 15c:	f2c2 0000 	movt	r0, #8192	; 0x2000
 160:	6801      	ldr	r1, [r0, #0]
 162:	3102      	adds	r1, #2
 164:	6001      	str	r1, [r0, #0]
 166:	4770      	bx	lr

GPIOB/C are sharing a resource (C higher prio). Notice, there is no BASEPRI manipulation at all.

For GPIOB, there is a single read of BASEPRI (stored in old_basepri_hw) and just two writes, one for entering critical section, one for exiting. On exit we detect that we are indeed at the initial priority for the task, thus we restore the old_basepri_hw instead of a logic priority.

Limitations and Drawbacks

None spotted so far.

Observations

> llvm-objdump target/thumbv7m-none-eabi/release/examples/lockopt -d > lockopt.asm

> cargo objdump --example lockopt --release -- -d > lockopt.asm

Neither give assembly dump with symbols (very annoying to rely on arm-none-eabi-objdump for proper objdumps), maybe just an option is missing?