Real-Time Interrupt-driven Concurrency (RTIC) framework for ARM Cortex-M microcontrollers
Find a file
2020-09-25 14:29:34 +00:00
.cargo CI: replace compiletest-rs with trybuild 2019-11-06 19:05:37 -05:00
.github Also check examples which require __v7 2020-09-25 05:23:55 +00:00
book Improved loop example docs to highlight that one cannot have empty loops in idle 2020-09-15 15:41:14 +02:00
ci Fixes an issue where one could double take the cortex_m Peripheral 2020-06-30 22:06:57 +02:00
examples Modules using lower-case in examples 2020-09-25 14:29:34 +00:00
macros Handle user hardware and software tasks and some resources 2020-09-25 14:29:34 +00:00
src Remove stale code, fix comment styling 2020-09-01 17:48:53 +00:00
tests CI: replace compiletest-rs with trybuild 2019-11-06 19:05:37 -05:00
ui/single Modules using lower-case in examples 2020-09-25 14:29:34 +00:00
.gitignore Make identifiers deterministic. 2019-02-16 00:23:01 +01:00
.travis.yml Use travis to set the PATH properly 2020-06-02 20:25:33 +00:00
build.rs Use buildrs for conditional compilation 2020-04-20 16:03:49 +00:00
Cargo.toml Fixed example and v7 flag 2020-09-25 14:52:09 +02:00
CHANGELOG.md Preparing v0.5.5 release 2020-08-27 14:53:50 +02:00
CNAME Rename RTFM to RTIC 2020-06-11 17:18:29 +00:00
CONTRIBUTING.md Rename RTFM to RTIC 2020-06-11 17:18:29 +00:00
LICENSE-APACHE initial commit 2017-03-05 00:29:08 -05:00
LICENSE-CC-BY-SA v0.4.0 2018-11-03 17:16:55 +01:00
LICENSE-MIT Rename RTFM to RTIC 2020-06-11 17:18:29 +00:00
README.md Added badges to 'README.md' file 2020-07-15 13:28:23 +02:00
redirect.html fix redirects and CNAME 2019-09-15 21:40:40 +02:00

Real-Time Interrupt-driven Concurrency

A concurrency framework for building real-time systems.

Formerly known as Real-Time For the Masses.

crates.io docs.rs book rustc

Features

  • Tasks as the unit of concurrency 1. Tasks can be event triggered (fired in response to asynchronous stimuli) or spawned by the application on demand.

  • Message passing between tasks. Specifically, messages can be passed to software tasks at spawn time.

  • A timer queue 2. Software tasks can be scheduled to run at some time in the future. This feature can be used to implement periodic tasks.

  • Support for prioritization of tasks and, thus, preemptive multitasking.

  • Efficient and data race free memory sharing through fine grained priority based critical sections 1.

  • Deadlock free execution guaranteed at compile time. This is an stronger guarantee than what's provided by the standard Mutex abstraction.

  • Minimal scheduling overhead. The task scheduler has minimal software footprint; the hardware does the bulk of the scheduling.

  • Highly efficient memory usage: All the tasks share a single call stack and there's no hard dependency on a dynamic memory allocator.

  • All Cortex-M devices are fully supported.

  • This task model is amenable to known WCET (Worst Case Execution Time) analysis and scheduling analysis techniques. (Though we haven't yet developed Rust friendly tooling for that.)

Requirements

  • Rust 1.36.0+

  • Applications must be written using the 2018 edition.

User documentation

API reference

Chat

Join us and talk about RTIC in the Matrix room.

Contributing

New features and big changes should go through the RFC process in the dedicated RFC repository.

Acknowledgments

This crate is based on the Real-Time For the Masses language created by the Embedded Systems group at Luleå University of Technology, led by Prof. Per Lindgren.

References

License

All source code (including code snippets) is licensed under either of

at your option.

The written prose contained within the book is licensed under the terms of the Creative Commons CC-BY-SA v4.0 license (LICENSE-CC-BY-SA or https://creativecommons.org/licenses/by-sa/4.0/legalcode).

Contribution

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be licensed as above, without any additional terms or conditions.


  1. Eriksson, J., Häggström, F., Aittamaa, S., Kruglyak, A., & Lindgren, P. (2013, June). Real-time for the masses, step 1: Programming API and static priority SRP kernel primitives. In Industrial Embedded Systems (SIES), 2013 8th IEEE International Symposium on (pp. 110-113). IEEE. ↩︎

  2. Lindgren, P., Fresk, E., Lindner, M., Lindner, A., Pereira, D., & Pinho, L. M. (2016). Abstract timers and their implementation onto the arm cortex-m family of mcus. ACM SIGBED Review, 13(1), 48-53. ↩︎