rtic/src/lib.rs

778 lines
22 KiB
Rust
Raw Normal View History

//! RTFM: Real Time For the Masses (ARM Cortex-M edition)
//!
2017-04-25 16:23:27 +02:00
//! RTFM is a framework for building event-driven applications for ARM Cortex-M
//! microcontrollers.
//!
//! This crate is based on the RTFM framework created by [prof. Per
//! Lindgren][per] and uses a simplified version of the Stack Resource Policy as
2017-04-25 16:23:27 +02:00
//! scheduling policy. Check the [references] for details.
//!
//! [per]: https://www.ltu.se/staff/p/pln-1.11258?l=en
//! [references]: ./index.html#references
//!
//! # Features
//!
2017-04-25 16:23:27 +02:00
//! - **Event triggered tasks** as the unit of concurrency.
//! - Supports prioritization of tasks and, thus, **preemptive multitasking**.
//! - **Data race free memory sharing** through fine grained *partial* critical
//! sections.
//! - **Deadlock free execution** guaranteed at compile time.
//! - **Minimal overhead** as the scheduler has no software component / runtime; the
//! hardware does all the scheduling.
//! - Full support for all Cortex M3, M4 and M7 devices. M0(+) is also supported
//! but the whole API is not available (due to missing hardware features).
//! - The number of task priority levels is configurable at compile time through
//! the `P2` (4 levels), `P3` (8 levels), etc. Cargo features. The number of
//! priority levels supported by the hardware is device specific but this
//! crate defaults to 16 as that's the most common scenario.
//! - This task model is amenable to known WCET (Worst Case Execution Time)
//! analysis and scheduling analysis techniques. (Though we haven't yet
2017-04-25 16:23:27 +02:00
//! developed Rust friendly tooling for that.)
//!
//! # Limitations
//!
2017-04-25 16:23:27 +02:00
//! - Task priorities must remain constant at runtime.
//!
//! # Dependencies
//!
//! - A device crate generated using [`svd2rust`] v0.6.x
//! - A `start` lang time: Vanilla `main` must be supported in binary crates.
//! You can use the [`cortex-m-rt`] crate to fulfill the requirement
//!
//! [`svd2rust`]: https://docs.rs/svd2rust/0.6.1/svd2rust/
//! [`cortex-m-rt`]: https://docs.rs/cortex-m-rt/0.1.1/cortex_m_rt/
//!
//! # Examples
//!
//! Ordered in increasing level of complexity:
//!
//! - [Zero tasks](./index.html#zero-tasks)
//! - [One task](./index.html#one-task)
//! - [Two "serial" tasks](./index.html#two-serial-tasks)
//! - [Preemptive multitasking](./index.html#preemptive-multitasking)
//! - [Peripherals as resources](./index.html#peripherals-as-resources)
//!
//! ## Zero tasks
//!
//! ``` ignore
//! #![no_std]
//!
//! #[macro_use] // for the `hprintln!` macro
//! extern crate cortex_m;
//!
//! // before main initialization + `start` lang item
//! extern crate cortex_m_rt;
//!
//! #[macro_use] // for the `tasks!` macro
//! extern crate cortex_m_rtfm as rtfm;
//!
//! // device crate generated using svd2rust
2017-04-25 16:23:27 +02:00
//! extern crate stm32f30x;
//!
//! use rtfm::{C16, P0};
//!
2017-04-25 16:23:27 +02:00
//! // TASKS (None in this example)
//! tasks!(stm32f30x, {});
//!
//! // INITIALIZATION PHASE
//! fn init(_priority: P0, _ceiling: &C16) {
//! hprintln!("INIT");
//! }
//!
//! // IDLE LOOP
//! fn idle(_priority: P0) -> ! {
//! hprintln!("IDLE");
//!
//! // Sleep
//! loop {
//! rtfm::wfi();
//! }
//! }
//! ```
//!
//! Expected output:
//!
//! ``` text
//! INIT
//! IDLE
//! ```
//!
//! The `tasks!` macro overrides the `main` function and imposes the following
//! structure into your program:
//!
2017-04-25 16:23:27 +02:00
//! - `init`, the initialization phase, runs first. This function is executed
//! inside a *global* critical section and can't be preempted.
//!
//! - `idle`, a never ending function that runs after `init`.
//!
//! Note that both `init` and `idle` have priority 0, the lowest priority.
//!
//! # One task
//!
//! ``` ignore
//! #![no_std]
//!
//! extern crate cortex_m_rt;
//! #[macro_use]
//! extern crate cortex_m_rtfm as rtfm;
2017-04-25 16:23:27 +02:00
//! extern crate stm32f30x;
//!
2017-04-25 16:23:27 +02:00
//! use stm32f30x::interrupt::Tim7;
//! use rtfm::{C16, Local, P0, P1};
//!
//! // INITIALIZATION PHASE
//! fn init(_priority: P0, _ceiling: &C16) {
//! // Configure TIM7 for periodic interrupts
//! // Configure GPIO for LED driving
//! }
//!
//! // IDLE LOOP
//! fn idle(_priority: P0) -> ! {
//! // Sleep
//! loop { rtfm::wfi() }
//! }
//!
//! // TASKS
2017-04-25 16:23:27 +02:00
//! tasks!(stm32f30x, {
//! periodic: (Tim7, P1, true),
//! });
//!
2017-04-25 16:23:27 +02:00
//! fn periodic(mut task: Tim7, _priority: P1) {
//! // Task local data
2017-04-25 16:23:27 +02:00
//! static STATE: Local<bool, Tim7> = Local::new(false);
//!
//! let state = STATE.borrow_mut(&mut task);
//!
//! // Toggle state
//! *state = !*state;
//!
//! // Blink an LED
//! if *state {
//! LED.on();
//! } else {
//! LED.off();
//! }
//! }
//! ```
//!
2017-04-25 16:23:27 +02:00
//! Here we define a task named `periodic` and bind it to the `Tim7`
//! interrupt. The `periodic` task will run every time the `Tim7` interrupt
//! is triggered. We assign to this task a priority of 1 (`P1`); this is the
//! lowest priority that a task can have.
//!
//! We use the [`Local`](./struct.Local.html) abstraction to add state to the
//! task; this task local data will be preserved across runs of the `periodic`
//! task. Note that `STATE` is owned by the `periodic` task, in the sense that
//! no other task can access it; this is reflected in its type signature (the
2017-04-25 16:23:27 +02:00
//! `Tim7` type parameter).
//!
//! # Two "serial" tasks
//!
//! ``` ignore
//! #![no_std]
//!
//! extern crate cortex_m_rt;
//! #[macro_use]
//! extern crate cortex_m_rtfm as rtfm;
2017-04-25 16:23:27 +02:00
//! extern crate stm32f30x;
//!
//! use core::cell::Cell;
//!
2017-04-25 16:23:27 +02:00
//! use stm32f30x::interrupt::{Tim6Dacunder, Tim7};
//! use rtfm::{C1, C16, P0, P1, Resource};
//!
//! // omitted: `idle`, `init`
//!
2017-04-25 16:23:27 +02:00
//! tasks!(stm32f30x, {
//! t1: (Tim6Dacunder, P1, true),
//! t2: (Tim7, P1, true),
//! });
//!
//! // Data shared between tasks `t1` and `t2`
//! static COUNTER: Resource<Cell<u32>, C1> = Resource::new(Cell::new(0));
//!
2017-04-25 16:23:27 +02:00
//! fn t1(_task: Tim6Dacunder, priority: P1) {
//! let ceiling = priority.as_ceiling();
//!
2017-04-25 16:23:27 +02:00
//! let counter = COUNTER.access(&priority, ceiling);
//!
//! counter.set(counter.get() + 1);
//! }
//!
2017-04-25 16:23:27 +02:00
//! fn t2(_task: Tim7, priority: P1) {
//! let ceiling = priority.as_ceiling();
//!
2017-04-25 16:23:27 +02:00
//! let counter = COUNTER.access(&priority, ceiling);
//!
//! counter.set(counter.get() + 2);
//! }
//! ```
//!
//! Here we declare two tasks, `t1` and `t2`; both with a priority of 1 (`P1`).
//! As both tasks have the same priority, we say that they are *serial* tasks in
//! the sense that `t1` can only run *after* `t2` is done and vice versa; i.e.
//! there's no preemption.
//!
//! To share data between these two tasks, we use the
//! [`Resource`](./struct.Resource.html) abstraction. As the tasks can't preempt
//! each other, they can access the `COUNTER` resource using the zero cost
//! [`access`](./struct.Resource.html#method.access) method -- no
//! synchronization needed.
//!
//! `COUNTER` has an extra type parameter: `C1`. This is the *ceiling* of the
//! resource. For now suffices to say that the ceiling must be the maximum of
//! the priorities of all the tasks that access the resource -- in this case,
//! `C1 == max(P1, P1)`. If you try a smaller value like `C0`, you'll find out
//! that your program doesn't compile.
//!
//! # Preemptive multitasking
//!
//! ``` ignore
//! #![no_std]
//!
//! extern crate cortex_m_rt;
//! #[macro_use]
//! extern crate cortex_m_rtfm as rtfm;
2017-04-25 16:23:27 +02:00
//! extern crate stm32f30x;
//!
//! use core::cell::Cell;
//!
2017-04-25 16:23:27 +02:00
//! use stm32f30x::interrupt::{Tim6Dacunder, Tim7};
//! use rtfm::{C2, C16, P0, P1, P2, Resource};
//!
//! // omitted: `idle`, `init`
//!
2017-04-25 16:23:27 +02:00
//! tasks!(stm32f30x, {
//! t1: (Tim6Dacunder, P1, true),
//! t2: (Tim7, P2, true),
//! });
//!
//! static COUNTER: Resource<Cell<u32>, C2> = Resource::new(Cell::new(0));
//!
2017-04-25 16:23:27 +02:00
//! fn t1(_task: Tim6Dacunder, priority: P1) {
//! // ..
//!
//! let ceiling: &C1 = priority.as_ceiling();
//!
//! ceiling.raise(&COUNTER, |ceiling: &C2| {
2017-04-25 16:23:27 +02:00
//! let counter = COUNTER.access(&priority, ceiling);
//!
//! counter.set(counter.get() + 1);
//! });
//!
//! // ..
//! }
//!
2017-04-25 16:23:27 +02:00
//! fn t2(_task: Tim7, priority: P2) {
//! let ceiling = priority.as_ceiling();
//!
2017-04-25 16:23:27 +02:00
//! let counter = COUNTER.access(&priority, ceiling);
//!
//! counter.set(counter.get() + 2);
//! }
//! ```
//!
//! Now we have a variation of the previous example. Like before, `t1` has a
//! priority of 1 (`P1`) but `t2` now has a priority of 2 (`P2`). This means
2017-04-25 16:23:27 +02:00
//! that `t2` can preempt `t1` if a `Tim7` interrupt occurs while `t1` is
//! being executed.
//!
//! To avoid data races, `t1` must modify `COUNTER` in an atomic way; i.e. `t2`
//! most not preempt `t1` while `COUNTER` is being modified. This is
//! accomplished by [`raise`](./struct.C.html#method.raise)-ing the `ceiling`.
//! This creates a critical section, denoted by a closure, for whose span
//! `COUNTER` is accessible but `t2` is blocked from preempting `t1`.
//!
//! How `t2` accesses `COUNTER` remains unchanged. Since `t1` can't preempt `t2`
//! due to the differences in priority; no critical section is needed in `t2`.
//!
//! Note that the ceiling of `COUNTER` had to change to `C2`. This is required
//! because the ceiling must be the maximum between `P1` and `P2`.
//!
//! Finally, it should be noted that the critical section in `t1` will only
//! block tasks with a priority of 2 or lower. This is exactly what the ceiling
//! represents: it's the "bar" that a task priority must pass in order to be
//! able to preempt the current task / critical section.
//!
//! # Peripherals as resources
//!
//! ``` ignore
//! #![no_std]
//!
//! extern crate cortex_m_rt;
//! #[macro_use]
//! extern crate cortex_m_rtfm as rtfm;
//! extern crate stm32f100xx;
//!
//! use rtfm::{C0, C16, P0, Peripheral};
//!
//! static GPIOA: Peripheral<stm32f100xx::Gpioa, C0> =
//! unsafe { Peripheral::new(stm32f100xx::GPIOA) };
//!
//! static RCC: Peripheral<stm32f100xx::Rcc, C0> =
//! unsafe { Peripheral::new(stm32f100xx::RCC) };
//!
//! tasks!(stm32f100xx, {});
//!
//! fn init(priority: P0, ceiling: &C16) {
//! let gpioa = GPIOA.access(&priority, &ceiling);
//! let rcc = RCC.access(&priority, &ceiling);
//!
//! // ..
//! }
//!
//! fn idle(_priority: P0) -> ! {
//! // Sleep
//! loop { rtfm::wfi() }
//! }
//! ```
//!
//! Peripherals are global resources too and as such they can be protected in
//! the same way as `Resource`s using the
//! [`Peripheral`](./struct.Peripheral.html) abstraction.
//!
//! `Peripheral` and `Resource` has pretty much the same API except that
//! `Peripheral.new` is `unsafe`. Care must be taken to NOT alias peripherals;
//! i.e. don't create two `Peripheral`s that point to the same register block.
//!
//! # References
//!
//! - Baker, T. P. (1991). Stack-based scheduling of realtime processes.
//! *Real-Time Systems*, 3(1), 67-99.
//!
//! > The original Stack Resource Policy paper. [PDF].
//!
//! [PDF]: http://www.cs.fsu.edu/~baker/papers/mstacks3.pdf
//!
//! - Eriksson, J., Häggström, F., Aittamaa, S., Kruglyak, A., & Lindgren, P.
//! (2013, June). Real-time for the masses, step 1: Programming API and static
//! priority SRP kernel primitives. In Industrial Embedded Systems (SIES),
//! 2013 8th IEEE International Symposium on (pp. 110-113). IEEE.
//!
//! > A description of the RTFM task and resource model. [PDF]
//!
//! [PDF]: http://www.diva-portal.org/smash/get/diva2:1005680/FULLTEXT01.pdf
2017-04-14 07:33:07 +02:00
#![deny(missing_docs)]
#![deny(warnings)]
2017-03-05 06:26:14 +01:00
#![feature(asm)]
#![feature(const_fn)]
#![no_std]
extern crate cortex_m;
extern crate static_ref;
2017-04-10 05:42:17 +02:00
extern crate typenum;
2017-03-05 06:26:14 +01:00
2017-04-10 05:42:17 +02:00
use core::cell::UnsafeCell;
2017-04-12 22:27:48 +02:00
use core::marker::PhantomData;
use core::ptr;
use cortex_m::ctxt::Context;
2017-04-10 05:42:17 +02:00
use cortex_m::interrupt::Nr;
2017-04-12 06:15:05 +02:00
#[cfg(not(thumbv6m))]
2017-04-10 05:42:17 +02:00
use cortex_m::register::{basepri, basepri_max};
use static_ref::Ref;
use typenum::{Cmp, Greater, U0, Unsigned};
2017-04-12 06:15:05 +02:00
#[cfg(not(thumbv6m))]
use typenum::Less;
2017-04-14 17:05:24 +02:00
pub use cortex_m::asm::{bkpt, wfi};
2017-04-10 05:42:17 +02:00
#[doc(hidden)]
pub use cortex_m::peripheral::NVIC as _NVIC;
2017-03-05 06:26:14 +01:00
/// Compiler barrier
2017-04-10 05:42:17 +02:00
macro_rules! barrier {
() => {
asm!(""
:
:
: "memory"
: "volatile");
}
}
/// Task local data
///
/// This data can only be accessed by the task `T`
pub struct Local<D, T> {
_task: PhantomData<T>,
data: UnsafeCell<D>,
}
impl<T, TASK> Local<T, TASK> {
/// Creates a task local variable with some initial `value`
pub const fn new(value: T) -> Self {
Local {
_task: PhantomData,
data: UnsafeCell::new(value),
}
}
/// Borrows the task local data for the duration of the task
pub fn borrow<'task>(&'static self, _task: &'task TASK) -> &'task T {
unsafe { &*self.data.get() }
2017-04-22 04:25:10 +02:00
}
/// Mutably borrows the task local data for the duration of the task
pub fn borrow_mut<'task>(
&'static self,
_task: &'task mut TASK,
) -> &'task mut T {
unsafe { &mut *self.data.get() }
}
}
unsafe impl<T, TASK> Sync for Local<T, TASK> {}
/// A resource with ceiling `C`
pub struct Resource<T, C> {
_ceiling: PhantomData<C>,
2017-04-10 05:42:17 +02:00
data: UnsafeCell<T>,
2017-03-05 06:26:14 +01:00
}
2017-04-22 04:38:39 +02:00
impl<T, RC> Resource<T, C<RC>>
where
2017-04-22 04:38:39 +02:00
RC: GreaterThanOrEqual<U0>,
RC: LessThanOrEqual<UMAX>,
{
2017-04-22 04:38:39 +02:00
/// Creates a new resource
pub const fn new(data: T) -> Self {
2017-04-10 05:42:17 +02:00
Resource {
_ceiling: PhantomData,
data: UnsafeCell::new(data),
2017-03-05 06:26:14 +01:00
}
}
2017-03-10 05:59:50 +01:00
}
2017-03-05 06:26:14 +01:00
2017-04-22 04:38:39 +02:00
impl<T, RC> Resource<T, C<RC>> {
/// Grants data race free and deadlock free access to the resource data
///
/// This operation is zero cost and doesn't impose any additional blocking.
///
2017-04-22 04:38:39 +02:00
/// # Requirements
///
/// To access the resource data these conditions must be met:
///
/// - The resource ceiling must be greater than or equal to the task
/// priority
/// - The system ceiling must be greater than or equal to the resource
/// ceiling
pub fn access<'cs, TP, SC>(
2017-04-17 18:59:56 +02:00
&'static self,
2017-04-22 04:38:39 +02:00
_priority: &P<TP>,
_current_ceiling: &'cs C<SC>,
2017-04-17 18:59:56 +02:00
) -> Ref<'cs, T>
where
2017-04-22 04:38:39 +02:00
RC: GreaterThanOrEqual<TP>,
SC: GreaterThanOrEqual<RC>,
2017-03-05 06:26:14 +01:00
{
unsafe { Ref::new(&*self.data.get()) }
2017-04-04 23:37:01 +02:00
}
2017-04-10 05:42:17 +02:00
}
unsafe impl<T, C> Sync for Resource<T, C> {}
2017-04-10 05:42:17 +02:00
/// A hardware peripheral as a resource
pub struct Peripheral<P, CEILING>
2017-04-17 18:59:56 +02:00
where
P: 'static,
2017-04-10 05:42:17 +02:00
{
peripheral: cortex_m::peripheral::Peripheral<P>,
_ceiling: PhantomData<CEILING>,
2017-03-10 05:59:50 +01:00
}
2017-03-05 06:26:14 +01:00
impl<P, CEILING> Peripheral<P, C<CEILING>>
2017-04-17 18:59:56 +02:00
where
CEILING: GreaterThanOrEqual<U0>,
CEILING: LessThanOrEqual<UMAX>,
2017-03-10 05:59:50 +01:00
{
2017-04-10 05:42:17 +02:00
/// Assigns a ceiling `C` to the `peripheral`
2017-04-04 23:37:01 +02:00
///
/// # Safety
///
2017-04-10 05:42:17 +02:00
/// You MUST not create two resources that point to the same peripheral
2017-04-17 18:59:56 +02:00
pub const unsafe fn new(peripheral: cortex_m::peripheral::Peripheral<P>,)
-> Self {
2017-04-10 05:42:17 +02:00
Peripheral {
_ceiling: PhantomData,
peripheral: peripheral,
}
}
2017-04-10 05:42:17 +02:00
}
2017-04-22 04:38:39 +02:00
impl<Periph, RC> Peripheral<Periph, C<RC>> {
/// See [Resource.access](./struct.Resource.html#method.access)
pub fn access<'cs, TP, SC>(
2017-04-17 18:59:56 +02:00
&'static self,
2017-04-22 04:38:39 +02:00
_priority: &P<TP>,
_system_ceiling: &'cs C<SC>,
2017-04-17 18:59:56 +02:00
) -> Ref<'cs, Periph>
where
2017-04-22 04:38:39 +02:00
RC: GreaterThanOrEqual<TP>,
SC: GreaterThanOrEqual<RC>,
{
unsafe { Ref::new(&*self.peripheral.get()) }
}
2017-03-05 06:26:14 +01:00
}
unsafe impl<T, C> Sync for Peripheral<T, C> {}
2017-04-10 05:42:17 +02:00
/// Runs the closure `f` in a *global* critical section
///
/// No task can preempt this critical section
pub fn critical<R, F>(f: F) -> R
2017-04-17 18:59:56 +02:00
where
F: FnOnce(&CMAX) -> R,
{
let primask = ::cortex_m::register::primask::read();
::cortex_m::interrupt::disable();
let r = f(&C { _marker: PhantomData });
// If the interrupts were active before our `disable` call, then re-enable
// them. Otherwise, keep them disabled
if primask.is_active() {
::cortex_m::interrupt::enable();
}
r
}
/// Disables the `task`
///
/// The task won't run even if the underlying interrupt is raised
pub fn disable<T, TP>(_task: fn(T, P<TP>))
where
T: Context + Nr,
{
// NOTE(safe) zero sized type
let _task = unsafe { ptr::read(0x0 as *const T) };
// NOTE(safe) atomic write
unsafe { (*_NVIC.get()).disable(_task) }
}
/// Enables the `task`
pub fn enable<T, TP>(_task: fn(T, P<TP>))
where
T: Context + Nr,
{
// NOTE(safe) zero sized type
let _task = unsafe { ptr::read(0x0 as *const T) };
// NOTE(safe) atomic write
unsafe { (*_NVIC.get()).enable(_task) }
}
/// Converts a shifted hardware priority into a logical priority
pub fn hw2logical(hw: u8) -> u8 {
(1 << PRIORITY_BITS) - (hw >> (8 - PRIORITY_BITS))
}
/// Converts a logical priority into a shifted hardware priority, as used by the
/// NVIC and the BASEPRI register
///
/// # Panics
///
/// This function panics if `logical` is outside the closed range
/// `[1, 1 << PRIORITY_BITS]`. Where `PRIORITY_BITS` is the number of priority
/// bits used by the device specific NVIC implementation.
pub fn logical2hw(logical: u8) -> u8 {
assert!(logical >= 1 && logical <= (1 << PRIORITY_BITS));
((1 << PRIORITY_BITS) - logical) << (8 - PRIORITY_BITS)
}
2017-04-14 07:33:07 +02:00
/// Requests the execution of a `task`
pub fn request<T, TP>(_task: fn(T, P<TP>))
2017-04-17 18:59:56 +02:00
where
T: Context + Nr,
2017-04-10 05:42:17 +02:00
{
let nvic = unsafe { &*_NVIC.get() };
2017-04-10 05:42:17 +02:00
match () {
#[cfg(debug_assertions)]
() => {
// NOTE(safe) zero sized type
let task = unsafe { core::ptr::read(0x0 as *const T) };
2017-04-10 05:42:17 +02:00
// NOTE(safe) atomic read
assert!(!nvic.is_pending(task),
"Task is already in the pending state");
}
#[cfg(not(debug_assertions))]
() => {}
}
2017-03-05 06:26:14 +01:00
// NOTE(safe) zero sized type
let task = unsafe { core::ptr::read(0x0 as *const T) };
2017-04-10 05:42:17 +02:00
// NOTE(safe) atomic write
nvic.set_pending(task);
}
#[doc(hidden)]
pub fn _validate_priority<TP>(_: &P<TP>)
where
TP: Cmp<U0, Output = Greater> + LessThanOrEqual<UMAX>,
{
}
2017-04-10 05:42:17 +02:00
/// A type-level ceiling
pub struct C<T> {
_marker: PhantomData<T>,
}
2017-04-22 04:38:39 +02:00
impl<SC> C<SC> {
/// Raises the system ceiling to match the `resource` ceiling
pub fn raise<RC, RES, R, F>(&self, _resource: &'static RES, f: F) -> R
2017-04-21 22:41:03 +02:00
where
2017-04-22 04:38:39 +02:00
RES: ResourceLike<Ceiling = RC>,
RC: Cmp<SC, Output = Greater> + Cmp<UMAX, Output = Less> + Unsigned,
F: FnOnce(&C<RC>) -> R,
2017-04-21 22:41:03 +02:00
{
unsafe {
let old_basepri = basepri::read();
2017-04-22 04:38:39 +02:00
basepri_max::write(logical2hw(RC::to_u8()));
2017-04-21 22:41:03 +02:00
barrier!();
let ret = f(&C { _marker: PhantomData });
barrier!();
basepri::write(old_basepri);
ret
}
}
}
2017-04-10 05:42:17 +02:00
/// A type-level priority
pub struct P<T> {
_marker: PhantomData<T>,
2017-03-05 06:26:14 +01:00
}
2017-03-10 05:59:50 +01:00
2017-04-10 05:42:17 +02:00
impl<T> P<T>
2017-04-17 18:59:56 +02:00
where
T: Unsigned,
2017-04-04 23:37:01 +02:00
{
2017-04-14 07:33:07 +02:00
#[doc(hidden)]
pub fn _hw() -> u8 {
logical2hw(T::to_u8())
2017-04-04 22:36:23 +02:00
}
}
/// Maps a `Resource` / `Peripheral` to its ceiling
///
/// Do not implement this trait yourself. This is an implementation detail.
pub unsafe trait ResourceLike {
/// The ceiling of the resource
type Ceiling;
}
2017-04-22 04:38:39 +02:00
unsafe impl<P, RC> ResourceLike for Peripheral<P, C<RC>> {
type Ceiling = RC;
}
2017-04-22 04:38:39 +02:00
unsafe impl<T, RC> ResourceLike for Resource<T, C<RC>> {
type Ceiling = RC;
}
2017-04-10 05:42:17 +02:00
/// Type-level `>=` operator
///
/// Do not implement this trait yourself. This is an implementation detail.
2017-04-10 05:42:17 +02:00
pub unsafe trait GreaterThanOrEqual<RHS> {}
/// Type-level `<=` operator
2017-04-10 05:42:17 +02:00
///
/// Do not implement this trait yourself. This is an implementation detail.
pub unsafe trait LessThanOrEqual<RHS> {}
2017-03-10 05:59:50 +01:00
/// A macro to declare tasks
///
/// **NOTE** This macro will expand to a `main` function.
///
/// Each `$task` is bound to an `$Interrupt` handler and has a priority `$P`.
/// `$enabled` indicates whether the task will be enabled before `idle` runs.
///
/// The `$Interrupt` handlers are defined in the `$device` crate.
///
/// Apart from defining the listed `$tasks`, the `init` and `idle` functions
/// must be defined as well. `init` has type signature `fn(P0, &C16)`, and
/// `idle` has signature `fn(P0) -> !`.
2017-04-10 05:42:17 +02:00
#[macro_export]
macro_rules! tasks {
($device:ident, {
$($task:ident: ($Interrupt:ident, $P:ident, $enabled:expr),)*
2017-04-10 05:42:17 +02:00
}) => {
fn main() {
$crate::critical(|cmax| {
fn validate_signature(_: fn($crate::P0, &$crate::CMAX)) {}
2017-04-14 07:39:12 +02:00
validate_signature(init);
let p0 = unsafe { ::core::mem::transmute::<_, P0>(()) };
init(p0, cmax);
2017-04-10 05:42:17 +02:00
set_priorities();
enable_tasks();
});
fn validate_signature(_: fn($crate::P0) -> !) {}
2017-04-14 07:39:12 +02:00
validate_signature(idle);
let p0 = unsafe { ::core::mem::transmute::<_, P0>(()) };
idle(p0);
2017-04-10 05:42:17 +02:00
fn set_priorities() {
// NOTE(safe) this function runs in an interrupt free context
let _nvic = unsafe { &*$crate::_NVIC.get() };
2017-04-10 05:42:17 +02:00
$(
{
let hw = $crate::$P::_hw();
unsafe {
_nvic.set_priority(
::$device::interrupt::Interrupt::$Interrupt,
hw,
);
2017-04-10 05:42:17 +02:00
}
}
)*
// TODO freeze the NVIC.IPR register using the MPU, if available
}
2017-04-10 05:42:17 +02:00
fn enable_tasks() {
// NOTE(safe) this function runs in an interrupt free context
let _nvic = unsafe { &*$crate::_NVIC.get() };
2017-04-10 05:42:17 +02:00
$(
if $enabled {
$crate::enable(::$task);
}
2017-04-10 05:42:17 +02:00
)*
}
2017-04-10 05:42:17 +02:00
#[allow(dead_code)]
#[link_section = ".rodata.interrupts"]
#[used]
static INTERRUPTS: ::$device::interrupt::Handlers =
::$device::interrupt::Handlers {
2017-04-10 05:42:17 +02:00
$(
$Interrupt: {
2017-04-10 05:42:17 +02:00
extern "C" fn $task(
task: ::$device::interrupt::$Interrupt
2017-04-10 05:42:17 +02:00
) {
let p = unsafe {
::core::mem::transmute::<_, $crate::$P>(())
};
$crate::_validate_priority(&p);
::$task(task, p)
2017-04-10 05:42:17 +02:00
}
$task
},
)*
..::$device::interrupt::DEFAULT_HANDLERS
2017-04-10 05:42:17 +02:00
};
}
}
}
2017-04-10 05:42:17 +02:00
include!(concat!(env!("OUT_DIR"), "/prio.rs"));