mirror of
https://github.com/rtic-rs/rtic.git
synced 2025-01-06 01:09:02 +01:00
update examples
This commit is contained in:
parent
3713959b3d
commit
62356da0be
1 changed files with 43 additions and 42 deletions
85
src/lib.rs
85
src/lib.rs
|
@ -1,22 +1,23 @@
|
|||
//! RTFM: Real Time For the Masses (ARM Cortex-M edition)
|
||||
//!
|
||||
//! RTFM is a framework for building embedded event-driven / real-time
|
||||
//! applications.
|
||||
//! RTFM is a framework for building event-driven applications for ARM Cortex-M
|
||||
//! microcontrollers.
|
||||
//!
|
||||
//! This crate is based on the RTFM framework created by [prof. Per
|
||||
//! Lindgren][per] and uses a simplified version of the Stack Resource Policy as
|
||||
//! scheduling policy. (Check the [references] for details)
|
||||
//! scheduling policy. Check the [references] for details.
|
||||
//!
|
||||
//! [per]: https://www.ltu.se/staff/p/pln-1.11258?l=en
|
||||
//! [references]: ./index.html#references
|
||||
//!
|
||||
//! # Features
|
||||
//!
|
||||
//! - Event triggered tasks as the unit of concurrency.
|
||||
//! - Supports prioritizing tasks and, thus, preemptive multitasking.
|
||||
//! - Data sharing through fine grained, *partial* critical sections.
|
||||
//! - Deadlock free execution guaranteed at compile time.
|
||||
//! - Minimal overhead as the scheduler has no software component / runtime; the
|
||||
//! - **Event triggered tasks** as the unit of concurrency.
|
||||
//! - Supports prioritization of tasks and, thus, **preemptive multitasking**.
|
||||
//! - **Data race free memory sharing** through fine grained *partial* critical
|
||||
//! sections.
|
||||
//! - **Deadlock free execution** guaranteed at compile time.
|
||||
//! - **Minimal overhead** as the scheduler has no software component / runtime; the
|
||||
//! hardware does all the scheduling.
|
||||
//! - Full support for all Cortex M3, M4 and M7 devices. M0(+) is also supported
|
||||
//! but the whole API is not available (due to missing hardware features).
|
||||
|
@ -26,11 +27,11 @@
|
|||
//! crate defaults to 16 as that's the most common scenario.
|
||||
//! - This task model is amenable to known WCET (Worst Case Execution Time)
|
||||
//! analysis and scheduling analysis techniques. (Though we haven't yet
|
||||
//! developed tooling for that.)
|
||||
//! developed Rust friendly tooling for that.)
|
||||
//!
|
||||
//! # Limitations
|
||||
//!
|
||||
//! - Task priority must remain constant at runtime.
|
||||
//! - Task priorities must remain constant at runtime.
|
||||
//!
|
||||
//! # Dependencies
|
||||
//!
|
||||
|
@ -66,12 +67,12 @@
|
|||
//! extern crate cortex_m_rtfm as rtfm;
|
||||
//!
|
||||
//! // device crate generated using svd2rust
|
||||
//! extern crate stm32f100xx;
|
||||
//! extern crate stm32f30x;
|
||||
//!
|
||||
//! use rtfm::{C16, P0};
|
||||
//!
|
||||
//! // Declare tasks. None in this example
|
||||
//! tasks!(stm32f100xx, {});
|
||||
//! // TASKS (None in this example)
|
||||
//! tasks!(stm32f30x, {});
|
||||
//!
|
||||
//! // INITIALIZATION PHASE
|
||||
//! fn init(_priority: P0, _ceiling: &C16) {
|
||||
|
@ -99,7 +100,7 @@
|
|||
//! The `tasks!` macro overrides the `main` function and imposes the following
|
||||
//! structure into your program:
|
||||
//!
|
||||
//! - `init`, the initialization phase, is run first. This function is executed
|
||||
//! - `init`, the initialization phase, runs first. This function is executed
|
||||
//! inside a *global* critical section and can't be preempted.
|
||||
//!
|
||||
//! - `idle`, a never ending function that runs after `init`.
|
||||
|
@ -114,9 +115,9 @@
|
|||
//! extern crate cortex_m_rt;
|
||||
//! #[macro_use]
|
||||
//! extern crate cortex_m_rtfm as rtfm;
|
||||
//! extern crate stm32f100xx;
|
||||
//! extern crate stm32f30x;
|
||||
//!
|
||||
//! use stm32f100xx::interrupt::Tim7Irq;
|
||||
//! use stm32f30x::interrupt::Tim7;
|
||||
//! use rtfm::{C16, Local, P0, P1};
|
||||
//!
|
||||
//! // INITIALIZATION PHASE
|
||||
|
@ -132,13 +133,13 @@
|
|||
//! }
|
||||
//!
|
||||
//! // TASKS
|
||||
//! tasks!(stm32f100xx, {
|
||||
//! periodic: (Tim7Irq, P1, true),
|
||||
//! tasks!(stm32f30x, {
|
||||
//! periodic: (Tim7, P1, true),
|
||||
//! });
|
||||
//!
|
||||
//! fn periodic(mut task: Tim7Irq, _priority: P1) {
|
||||
//! fn periodic(mut task: Tim7, _priority: P1) {
|
||||
//! // Task local data
|
||||
//! static STATE: Local<bool, Tim7Irq> = Local::new(false);
|
||||
//! static STATE: Local<bool, Tim7> = Local::new(false);
|
||||
//!
|
||||
//! let state = STATE.borrow_mut(&mut task);
|
||||
//!
|
||||
|
@ -154,8 +155,8 @@
|
|||
//! }
|
||||
//! ```
|
||||
//!
|
||||
//! Here we define a task named `periodic` and bind it to the `Tim7Irq`
|
||||
//! interrupt. The `periodic` task will run every time the `Tim7Irq` interrupt
|
||||
//! Here we define a task named `periodic` and bind it to the `Tim7`
|
||||
//! interrupt. The `periodic` task will run every time the `Tim7` interrupt
|
||||
//! is triggered. We assign to this task a priority of 1 (`P1`); this is the
|
||||
//! lowest priority that a task can have.
|
||||
//!
|
||||
|
@ -163,7 +164,7 @@
|
|||
//! task; this task local data will be preserved across runs of the `periodic`
|
||||
//! task. Note that `STATE` is owned by the `periodic` task, in the sense that
|
||||
//! no other task can access it; this is reflected in its type signature (the
|
||||
//! `Tim7Irq` type parameter).
|
||||
//! `Tim7` type parameter).
|
||||
//!
|
||||
//! # Two "serial" tasks
|
||||
//!
|
||||
|
@ -173,35 +174,35 @@
|
|||
//! extern crate cortex_m_rt;
|
||||
//! #[macro_use]
|
||||
//! extern crate cortex_m_rtfm as rtfm;
|
||||
//! extern crate stm32f100xx;
|
||||
//! extern crate stm32f30x;
|
||||
//!
|
||||
//! use core::cell::Cell;
|
||||
//!
|
||||
//! use stm32f100xx::interrupt::{Tim6DacIrq, Tim7Irq};
|
||||
//! use stm32f30x::interrupt::{Tim6Dacunder, Tim7};
|
||||
//! use rtfm::{C1, C16, P0, P1, Resource};
|
||||
//!
|
||||
//! // omitted: `idle`, `init`
|
||||
//!
|
||||
//! tasks!(stm32f100xx, {
|
||||
//! t1: (Tim6DacIrq, P1, true),
|
||||
//! t2: (Tim7Irq, P1, true),
|
||||
//! tasks!(stm32f30x, {
|
||||
//! t1: (Tim6Dacunder, P1, true),
|
||||
//! t2: (Tim7, P1, true),
|
||||
//! });
|
||||
//!
|
||||
//! // Data shared between tasks `t1` and `t2`
|
||||
//! static COUNTER: Resource<Cell<u32>, C1> = Resource::new(Cell::new(0));
|
||||
//!
|
||||
//! fn t1(_task: Tim6DacIrq, priority: P1) {
|
||||
//! fn t1(_task: Tim6Dacunder, priority: P1) {
|
||||
//! let ceiling = priority.as_ceiling();
|
||||
//!
|
||||
//! let counter = COUNTER.access(&priority, &ceiling);
|
||||
//! let counter = COUNTER.access(&priority, ceiling);
|
||||
//!
|
||||
//! counter.set(counter.get() + 1);
|
||||
//! }
|
||||
//!
|
||||
//! fn t2(_task: Tim7Irq, priority: P1) {
|
||||
//! fn t2(_task: Tim7, priority: P1) {
|
||||
//! let ceiling = priority.as_ceiling();
|
||||
//!
|
||||
//! let counter = COUNTER.access(&priority, &ceiling);
|
||||
//! let counter = COUNTER.access(&priority, ceiling);
|
||||
//!
|
||||
//! counter.set(counter.get() + 2);
|
||||
//! }
|
||||
|
@ -232,29 +233,29 @@
|
|||
//! extern crate cortex_m_rt;
|
||||
//! #[macro_use]
|
||||
//! extern crate cortex_m_rtfm as rtfm;
|
||||
//! extern crate stm32f100xx;
|
||||
//! extern crate stm32f30x;
|
||||
//!
|
||||
//! use core::cell::Cell;
|
||||
//!
|
||||
//! use stm32f100xx::interrupt::{Tim6DacIrq, Tim7Irq};
|
||||
//! use stm32f30x::interrupt::{Tim6Dacunder, Tim7};
|
||||
//! use rtfm::{C2, C16, P0, P1, P2, Resource};
|
||||
//!
|
||||
//! // omitted: `idle`, `init`
|
||||
//!
|
||||
//! tasks!(stm32f100xx, {
|
||||
//! t1: (Tim6DacIrq, P1, true),
|
||||
//! t2: (Tim7Irq, P2, true),
|
||||
//! tasks!(stm32f30x, {
|
||||
//! t1: (Tim6Dacunder, P1, true),
|
||||
//! t2: (Tim7, P2, true),
|
||||
//! });
|
||||
//!
|
||||
//! static COUNTER: Resource<Cell<u32>, C2> = Resource::new(Cell::new(0));
|
||||
//!
|
||||
//! fn t1(_task: Tim6DacIrq, priority: P1) {
|
||||
//! fn t1(_task: Tim6Dacunder, priority: P1) {
|
||||
//! // ..
|
||||
//!
|
||||
//! let ceiling: &C1 = priority.as_ceiling();
|
||||
//!
|
||||
//! ceiling.raise(&COUNTER, |ceiling: &C2| {
|
||||
//! let counter = COUNTER.access(&priority, &ceiling);
|
||||
//! let counter = COUNTER.access(&priority, ceiling);
|
||||
//!
|
||||
//! counter.set(counter.get() + 1);
|
||||
//! });
|
||||
|
@ -262,10 +263,10 @@
|
|||
//! // ..
|
||||
//! }
|
||||
//!
|
||||
//! fn t2(_task: Tim7Irq, priority: P2) {
|
||||
//! fn t2(_task: Tim7, priority: P2) {
|
||||
//! let ceiling = priority.as_ceiling();
|
||||
//!
|
||||
//! let counter = COUNTER.access(&priority, &ceiling);
|
||||
//! let counter = COUNTER.access(&priority, ceiling);
|
||||
//!
|
||||
//! counter.set(counter.get() + 2);
|
||||
//! }
|
||||
|
@ -273,7 +274,7 @@
|
|||
//!
|
||||
//! Now we have a variation of the previous example. Like before, `t1` has a
|
||||
//! priority of 1 (`P1`) but `t2` now has a priority of 2 (`P2`). This means
|
||||
//! that `t2` can preempt `t1` if a `Tim7Irq` interrupt occurs while `t1` is
|
||||
//! that `t2` can preempt `t1` if a `Tim7` interrupt occurs while `t1` is
|
||||
//! being executed.
|
||||
//!
|
||||
//! To avoid data races, `t1` must modify `COUNTER` in an atomic way; i.e. `t2`
|
||||
|
|
Loading…
Reference in a new issue