rtic/src/lib.rs
2017-05-15 22:16:59 -05:00

956 lines
27 KiB
Rust

//! Real Time For the Masses (RTFM), a framework for building concurrent
//! applications, for ARM Cortex-M microcontrollers
//!
//! This crate is based on [the RTFM framework] created by the Embedded Systems
//! group at [Luleå University of Technology][ltu], led by Prof. Per Lindgren,
//! and uses a simplified version of the Stack Resource Policy as scheduling
//! policy (check the [references] for details).
//!
//! [the RTFM framework]: http://www.rtfm-lang.org/
//! [ltu]: https://www.ltu.se/?l=en
//! [per]: https://www.ltu.se/staff/p/pln-1.11258?l=en
//! [references]: ./index.html#references
//!
//! # Features
//!
//! - **Event triggered tasks** as the unit of concurrency.
//! - Support for prioritization of tasks and, thus, **preemptive
//! multitasking**.
//! - **Efficient and data race free memory sharing** through fine grained *non
//! global* critical sections.
//! - **Deadlock free execution** guaranteed at compile time.
//! - **Minimal scheduling overhead** as the scheduler has no "software
//! component": the hardware does all the scheduling.
//! - **Highly efficient memory usage**: All the tasks share a single call stack
//! and there's no hard dependency on a dynamic memory allocator.
//! - **All Cortex M3, M4 and M7 devices are fully supported**. M0(+) is
//! partially supported as the whole API is not available due to missing
//! hardware features.
//! - The number of task priority levels is configurable at compile time through
//! the `P2` (4 levels), `P3` (8 levels), etc. Cargo features. The number of
//! priority levels supported by the hardware is device specific but this
//! crate defaults to 16 as that's the most common scenario.
//! - This task model is amenable to known WCET (Worst Case Execution Time)
//! analysis and scheduling analysis techniques. (Though we haven't yet
//! developed Rust friendly tooling for that.)
//!
//! # Requirements
//!
//! - Tasks must run to completion. That's it, tasks can't contain endless
//! loops.
//! - Task priorities must remain constant at runtime.
//!
//! # Dependencies
//!
//! - A device crate generated using [`svd2rust`] v0.7.x
//! - A `start` lang time: Vanilla `main` must be supported in binary crates.
//! You can use the [`cortex-m-rt`] crate to fulfill the requirement
//!
//! [`svd2rust`]: https://docs.rs/svd2rust/0.7.0/svd2rust/
//! [`cortex-m-rt`]: https://docs.rs/cortex-m-rt/0.1.1/cortex_m_rt/
//!
//! # Examples
//!
//! Ordered in increasing level of complexity:
//!
//! - [Zero tasks](./index.html#zero-tasks)
//! - [One task](./index.html#one-task)
//! - [Two "serial" tasks](./index.html#two-serial-tasks)
//! - [Preemptive multitasking](./index.html#preemptive-multitasking)
//! - [Peripherals as resources](./index.html#peripherals-as-resources)
//!
//! ## Zero tasks
//!
//! ``` ignore
//! #![feature(used)]
//! #![no_std]
//!
//! #[macro_use] // for the `hprintln!` macro
//! extern crate cortex_m;
//!
//! // before main initialization + `start` lang item
//! extern crate cortex_m_rt;
//!
//! #[macro_use] // for the `tasks!` macro
//! extern crate cortex_m_rtfm as rtfm;
//!
//! // device crate generated using svd2rust
//! extern crate stm32f30x;
//!
//! use rtfm::{P0, T0, TMax};
//!
//! // TASKS (None in this example)
//! tasks!(stm32f30x, {});
//!
//! // INITIALIZATION PHASE
//! fn init(_priority: P0, _threshold: &TMax) {
//! hprintln!("INIT");
//! }
//!
//! // IDLE LOOP
//! fn idle(_priority: P0, _threshold: T0) -> ! {
//! hprintln!("IDLE");
//!
//! // Sleep
//! loop {
//! rtfm::wfi();
//! }
//! }
//! ```
//!
//! Expected output:
//!
//! ``` text
//! INIT
//! IDLE
//! ```
//!
//! The `tasks!` macro overrides the `main` function and imposes the following
//! structure into your program:
//!
//! - `init`, the initialization phase, runs first. This function is executed
//! "atomically", in the sense that no task / interrupt can preempt it.
//!
//! - `idle`, a never ending function that runs after `init`.
//!
//! Both `init` and `idle` have a priority of 0, the lowest priority. In RTFM,
//! a higher priority value means more urgent.
//!
//! # One task
//!
//! ``` ignore
//! #![feature(const_fn)]
//! #![feature(used)]
//! #![no_std]
//!
//! extern crate cortex_m_rt;
//! #[macro_use]
//! extern crate cortex_m_rtfm as rtfm;
//! extern crate stm32f30x;
//!
//! use stm32f30x::interrupt::Tim7;
//! use rtfm::{Local, P0, P1, T0, T1, TMax};
//!
//! // INITIALIZATION PHASE
//! fn init(_priority: P0, _threshold: &TMax) {
//! // Configure TIM7 for periodic interrupts
//! // Configure GPIO for LED driving
//! }
//!
//! // IDLE LOOP
//! fn idle(_priority: P0, _threshold: T0) -> ! {
//! // Sleep
//! loop {
//! rtfm::wfi();
//! }
//! }
//!
//! // TASKS
//! tasks!(stm32f30x, {
//! periodic: Task {
//! interrupt: Tim7,
//! priority: P1,
//! enabled: true,
//! },
//! });
//!
//! fn periodic(mut task: Tim7, _priority: P1, _threshold: T1) {
//! // Task local data
//! static STATE: Local<bool, Tim7> = Local::new(false);
//!
//! let state = STATE.borrow_mut(&mut task);
//!
//! // Toggle state
//! *state = !*state;
//!
//! // Blink an LED
//! if *state {
//! LED.on();
//! } else {
//! LED.off();
//! }
//! }
//! ```
//!
//! Here we define a task named `periodic` and bind it to the `Tim7`
//! interrupt. The `periodic` task will run every time the `Tim7` interrupt
//! is triggered. We assign to this task a priority of 1 (`P1`); this is the
//! lowest priority that a task can have.
//!
//! We use the [`Local`](./struct.Local.html) abstraction to add state to the
//! task; this task local data will be preserved across runs of the `periodic`
//! task. Note that `STATE` is owned by the `periodic` task, in the sense that
//! no other task can access it; this is reflected in its type signature (the
//! `Tim7` type parameter).
//!
//! # Two "serial" tasks
//!
//! ``` ignore
//! #![feature(const_fn)]
//! #![feature(used)]
//! #![no_std]
//!
//! extern crate cortex_m_rt;
//! #[macro_use]
//! extern crate cortex_m_rtfm as rtfm;
//! extern crate stm32f30x;
//!
//! use core::cell::Cell;
//!
//! use stm32f30x::interrupt::{Tim6Dacunder, Tim7};
//! use rtfm::{C1, P0, P1, Resource, T0, T1, TMax};
//!
//! tasks!(stm32f30x, {
//! t1: Task {
//! interrupt: Tim6Dacunder,
//! priority: P1,
//! enabled: true,
//! },
//! t2: Task {
//! interrupt: Tim7,
//! priority: P1,
//! enabled: true,
//! },
//! });
//!
//! // Data shared between tasks `t1` and `t2`
//! static COUNTER: Resource<Cell<u32>, C1> = Resource::new(Cell::new(0));
//!
//! fn init(priority: P0, threshold: &TMax) {
//! // ..
//! }
//!
//! fn idle(priority: P0, threshold: T0) -> ! {
//! // Sleep
//! loop {
//! rtfm::wfi();
//! }
//! }
//!
//! fn t1(_task: Tim6Dacunder, priority: P1, threshold: T1) {
//! let counter = COUNTER.access(&priority, &threshold);
//!
//! counter.set(counter.get() + 1);
//! }
//!
//! fn t2(_task: Tim7, priority: P1, threshold: T1) {
//! let counter = COUNTER.access(&priority, &threshold);
//!
//! counter.set(counter.get() + 2);
//! }
//! ```
//!
//! Here we declare two tasks, `t1` and `t2`; both with a priority of 1 (`P1`).
//! As both tasks have the same priority, we say that they are *serial* tasks in
//! the sense that `t1` can only run *after* `t2` is done and vice versa; i.e.
//! no preemption between them is possible.
//!
//! To share data between these two tasks, we use the
//! [`Resource`](./struct.Resource.html) abstraction. As the tasks can't preempt
//! each other, they can access the `COUNTER` resource using the zero cost
//! [`access`](./struct.Resource.html#method.access) method -- no
//! synchronization is required.
//!
//! `COUNTER` has an extra type parameter: `C1`. This is the *ceiling* of the
//! resource. For now suffices to say that the ceiling must be the maximum of
//! the priorities of all the tasks that access the resource -- in this case,
//! `C1 == max(P1, P1)`. If you try a smaller value like `C0`, you'll find out
//! that your program doesn't compile.
//!
//! # Preemptive multitasking
//!
//! ``` ignore
//! #![feature(const_fn)]
//! #![feature(used)]
//! #![no_std]
//!
//! extern crate cortex_m_rt;
//! #[macro_use]
//! extern crate cortex_m_rtfm as rtfm;
//! extern crate stm32f30x;
//!
//! use core::cell::Cell;
//!
//! use stm32f30x::interrupt::{Tim6Dacunder, Tim7};
//! use rtfm::{C2, P0, P1, P2, Resource, T0, T1, T2, TMax};
//!
//! tasks!(stm32f30x, {
//! t1: Task {
//! interrupt: Tim6Dacunder,
//! priority: P1,
//! enabled: true,
//! },
//! t2: Task {
//! interrupt: Tim7,
//! priority: P2,
//! enabled: true,
//! },
//! });
//!
//! static COUNTER: Resource<Cell<u32>, C2> = Resource::new(Cell::new(0));
//!
//! fn init(priority: P0, threshold: &TMax) {
//! // ..
//! }
//!
//! fn idle(priority: P0, threshold: T0) -> ! {
//! // Sleep
//! loop {
//! rtfm::wfi();
//! }
//! }
//!
//! fn t1(_task: Tim6Dacunder, priority: P1, threshold: T1) {
//! // ..
//!
//! threshold.raise(
//! &COUNTER, |threshold: &T2| {
//! let counter = COUNTER.access(&priority, threshold);
//!
//! counter.set(counter.get() + 1);
//! }
//! );
//!
//! // ..
//! }
//!
//! fn t2(_task: Tim7, priority: P2, threshold: T2) {
//! let counter = COUNTER.access(&priority, &threshold);
//!
//! counter.set(counter.get() + 2);
//! }
//! ```
//!
//! Now we have a variation of the previous example. Like before, `t1` has a
//! priority of 1 (`P1`) but `t2` now has a priority of 2 (`P2`). This means
//! that `t2` can preempt `t1` if a `Tim7` interrupt occurs while `t1` is
//! being executed.
//!
//! To avoid data races, `t1` must modify `COUNTER` in an atomic way; i.e. `t2`
//! most not preempt `t1` while `COUNTER` is being modified. This is
//! accomplished by [`raise`](./struct.C.html#method.raise)-ing the preemption
//! `threshold`. This creates a critical section, denoted by a closure; for
//! whose execution, `COUNTER` is accessible while `t2` is prevented from
//! preempting `t1`.
//!
//! How `t2` accesses `COUNTER` remains unchanged. Since `t1` can't preempt `t2`
//! due to the differences in priority; no critical section is needed in `t2`.
//!
//! Note that the ceiling of `COUNTER` had to be changed to `C2`. This is
//! required because the ceiling must be the maximum between `P1` and `P2`.
//!
//! Finally, it should be noted that the critical section in `t1` will only
//! block tasks with a priority of 2 or lower. This is exactly what the
//! preemption threshold represents: it's the "bar" that a task priority must
//! pass in order to be able to preempt the current task / critical section.
//! Note that a task with a priority of e.g. 3 (`P3`) effectively imposes a
//! threshold of 3 (`C3`) because only a task with a priority of 4 or greater
//! can preempt it.
//!
//! # Peripherals as resources
//!
//! ``` ignore
//! #![feature(const_fn)]
//! #![feature(used)]
//! #![no_std]
//!
//! extern crate cortex_m_rt;
//! #[macro_use]
//! extern crate cortex_m_rtfm as rtfm;
//! extern crate stm32f30x;
//!
//! use rtfm::{P0, Peripheral, T0, TMax};
//!
//! peripherals!(stm32f30x, {
//! GPIOA: Peripheral {
//! register_block: Gpioa,
//! ceiling: C0,
//! },
//! RCC: Peripheral {
//! register_block: Rcc,
//! ceiling: C0,
//! },
//! });
//!
//! tasks!(stm32f30x, {});
//!
//! fn init(priority: P0, threshold: &TMax) {
//! let gpioa = GPIOA.access(&priority, threshold);
//! let rcc = RCC.access(&priority, threshold);
//!
//! // ..
//! }
//!
//! fn idle(_priority: P0, _threshold: T0) -> ! {
//! // Sleep
//! loop {
//! rtfm::wfi();
//! }
//! }
//! ```
//!
//! Peripherals are global resources too and as such they can be protected in
//! the same way as `Resource`s using the
//! [`Peripheral`](./struct.Peripheral.html) abstraction.
//!
//! `Peripheral` and `Resource` has pretty much the same API except that
//! `Peripheral` instances must be declared using the
//! [`peripherals!`](./macro.peripherals.html) macro.
//!
//! # References
//!
//! - Baker, T. P. (1991). Stack-based scheduling of realtime processes.
//! *Real-Time Systems*, 3(1), 67-99.
//!
//! > The original Stack Resource Policy paper. [PDF][srp].
//!
//! [srp]: http://www.cs.fsu.edu/~baker/papers/mstacks3.pdf
//!
//! - Eriksson, J., Häggström, F., Aittamaa, S., Kruglyak, A., & Lindgren, P.
//! (2013, June). Real-time for the masses, step 1: Programming API and static
//! priority SRP kernel primitives. In Industrial Embedded Systems (SIES),
//! 2013 8th IEEE International Symposium on (pp. 110-113). IEEE.
//!
//! > A description of the RTFM task and resource model. [PDF][rtfm]
//!
//! [rtfm]: http://www.diva-portal.org/smash/get/diva2:1005680/FULLTEXT01.pdf
#![deny(missing_docs)]
#![deny(warnings)]
#![feature(asm)]
#![feature(const_fn)]
#![feature(optin_builtin_traits)]
#![no_std]
extern crate cortex_m;
extern crate static_ref;
extern crate typenum;
use core::cell::UnsafeCell;
use core::marker::PhantomData;
use core::ptr;
use cortex_m::ctxt::Context;
use cortex_m::interrupt::Nr;
#[cfg(not(thumbv6m))]
use cortex_m::register::{basepri, basepri_max};
use static_ref::Ref;
use typenum::{Cmp, Greater, U0, Unsigned};
#[cfg(not(thumbv6m))]
use typenum::Less;
pub use cortex_m::asm::{bkpt, wfi};
#[doc(hidden)]
pub use cortex_m::peripheral::NVIC as _NVIC;
/// Compiler barrier
macro_rules! barrier {
() => {
asm!(""
:
:
: "memory"
: "volatile");
}
}
/// Task local data
///
/// This data can only be accessed by the task `T`
pub struct Local<D, T> {
_task: PhantomData<T>,
data: UnsafeCell<D>,
}
impl<T, TASK> Local<T, TASK> {
/// Creates a task local variable with some initial `value`
pub const fn new(value: T) -> Self {
Local {
_task: PhantomData,
data: UnsafeCell::new(value),
}
}
/// Borrows the task local data for the duration of the task
pub fn borrow<'task>(&'static self, _task: &'task TASK) -> &'task T {
unsafe { &*self.data.get() }
}
/// Mutably borrows the task local data for the duration of the task
pub fn borrow_mut<'task>(
&'static self,
_task: &'task mut TASK,
) -> &'task mut T {
unsafe { &mut *self.data.get() }
}
}
unsafe impl<T, TASK> Sync for Local<T, TASK> {}
/// A resource with ceiling `C`
///
/// A resource is used to share memory between two or more tasks
pub struct Resource<T, C> {
_ceiling: PhantomData<C>,
data: UnsafeCell<T>,
}
impl<T, RC> Resource<T, RC>
where
RC: GreaterThanOrEqual<U0>,
RC: LessThanOrEqual<UMax>,
{
/// Creates a new resource
pub const fn new(data: T) -> Self {
Resource {
_ceiling: PhantomData,
data: UnsafeCell::new(data),
}
}
}
impl<T, RC> Resource<T, RC> {
/// Grants data race free and deadlock free access to the resource data
///
/// This operation is zero cost and doesn't impose any additional blocking.
///
/// # Requirements
///
/// To access the resource data these conditions must be met:
///
/// - The resource ceiling must be greater than or equal to the task
/// priority
/// - The preemption threshold must be greater than or equal to the resource
/// ceiling
pub fn access<'cs, TP, PT>(
&'static self,
_task_priority: &Priority<TP>,
_preemption_threshold: &'cs Threshold<PT>,
) -> Ref<'cs, T>
where
RC: GreaterThanOrEqual<TP>,
PT: GreaterThanOrEqual<RC>,
{
unsafe { Ref::new(&*self.data.get()) }
}
}
unsafe impl<T, C> Sync for Resource<T, C>
where
T: Send,
{
}
/// A hardware peripheral as a resource
///
/// To assign a ceiling to a peripheral, use the
/// [`peripherals!`](./macro.peripherals.html) macro
pub struct Peripheral<P, PC>
where
P: 'static,
{
peripheral: cortex_m::peripheral::Peripheral<P>,
_ceiling: PhantomData<PC>,
}
impl<P, PC> Peripheral<P, PC>
where
PC: GreaterThanOrEqual<U0>,
PC: LessThanOrEqual<UMax>,
{
#[doc(hidden)]
pub const unsafe fn _new(peripheral: cortex_m::peripheral::Peripheral<P>,)
-> Self {
Peripheral {
_ceiling: PhantomData,
peripheral: peripheral,
}
}
}
impl<Periph, PC> Peripheral<Periph, PC> {
/// See [Resource.access](./struct.Resource.html#method.access)
pub fn access<'cs, TP, PT>(
&'static self,
_task_priority: &Priority<TP>,
_preemption_threshold: &'cs Threshold<PT>,
) -> Ref<'cs, Periph>
where
PC: GreaterThanOrEqual<TP>,
PT: GreaterThanOrEqual<PC>,
{
unsafe { Ref::new(&*self.peripheral.get()) }
}
}
unsafe impl<T, C> Sync for Peripheral<T, C> {}
/// Runs the closure `f` "atomically"
///
/// No task can preempt the execution of the closure
pub fn atomic<R, F>(f: F) -> R
where
F: FnOnce(&TMax) -> R,
{
let primask = ::cortex_m::register::primask::read();
::cortex_m::interrupt::disable();
let r = f(&Threshold { _marker: PhantomData });
// If the interrupts were active before our `disable` call, then re-enable
// them. Otherwise, keep them disabled
if primask.is_active() {
unsafe { ::cortex_m::interrupt::enable() }
}
r
}
/// Disables a `task`
///
/// The task won't run even if the underlying interrupt is raised
pub fn disable<T, N>(_task: fn(T, Priority<N>, Threshold<N>))
where
T: Context + Nr,
{
// NOTE(safe) zero sized type
let _task = unsafe { ptr::read(0x0 as *const T) };
// NOTE(safe) atomic write
unsafe { (*_NVIC.get()).disable(_task) }
}
/// Enables a `task`
pub fn enable<T, N>(_task: fn(T, Priority<N>, Threshold<N>))
where
T: Context + Nr,
{
// NOTE(safe) zero sized type
let _task = unsafe { ptr::read(0x0 as *const T) };
// NOTE(safe) atomic write
unsafe { (*_NVIC.get()).enable(_task) }
}
/// Converts a shifted hardware priority into a logical priority
pub fn hw2logical(hw: u8) -> u8 {
(1 << PRIORITY_BITS) - (hw >> (8 - PRIORITY_BITS))
}
/// Converts a logical priority into a shifted hardware priority, as used by the
/// NVIC and the BASEPRI register
///
/// # Panics
///
/// This function panics if `logical` is outside the closed range
/// `[1, 1 << PRIORITY_BITS]`. Where `PRIORITY_BITS` is the number of priority
/// bits used by the device specific NVIC implementation.
pub fn logical2hw(logical: u8) -> u8 {
assert!(logical >= 1 && logical <= (1 << PRIORITY_BITS));
((1 << PRIORITY_BITS) - logical) << (8 - PRIORITY_BITS)
}
/// Requests the execution of a `task`
pub fn request<T, N>(_task: fn(T, Priority<N>, Threshold<N>))
where
T: Context + Nr,
{
let nvic = unsafe { &*_NVIC.get() };
match () {
#[cfg(debug_assertions)]
() => {
// NOTE(safe) zero sized type
let task = unsafe { core::ptr::read(0x0 as *const T) };
// NOTE(safe) atomic read
assert!(!nvic.is_pending(task),
"Task is already in the pending state");
}
#[cfg(not(debug_assertions))]
() => {}
}
// NOTE(safe) zero sized type
let task = unsafe { core::ptr::read(0x0 as *const T) };
// NOTE(safe) atomic write
nvic.set_pending(task);
}
#[doc(hidden)]
pub fn _validate_priority<TP>(_: &Priority<TP>)
where
TP: Cmp<U0, Output = Greater> + LessThanOrEqual<UMax>,
{
}
/// Preemption threshold
pub struct Threshold<T> {
_marker: PhantomData<T>,
}
impl<PT> Threshold<PT> {
/// Raises the preemption threshold to match the `resource` ceiling
#[cfg(not(thumbv6m))]
pub fn raise<RC, RES, R, F>(&self, _resource: &'static RES, f: F) -> R
where
RES: ResourceLike<Ceiling = RC>,
RC: Cmp<PT, Output = Greater> + Cmp<UMax, Output = Less> + Unsigned,
F: FnOnce(&Threshold<RC>) -> R,
{
unsafe {
let old_basepri = basepri::read();
basepri_max::write(logical2hw(RC::to_u8()));
barrier!();
let ret = f(&Threshold { _marker: PhantomData });
barrier!();
basepri::write(old_basepri);
ret
}
}
}
impl<N> !Send for Threshold<N> {}
/// Priority
pub struct Priority<N> {
_marker: PhantomData<N>,
}
impl<T> Priority<T>
where
T: Unsigned,
{
#[doc(hidden)]
pub fn _hw() -> u8 {
logical2hw(T::to_u8())
}
}
impl<N> !Send for Priority<N> {}
/// Maps a `Resource` / `Peripheral` to its ceiling
///
/// Do not implement this trait yourself. This is an implementation detail.
pub unsafe trait ResourceLike {
/// The ceiling of the resource
type Ceiling;
}
unsafe impl<P, PC> ResourceLike for Peripheral<P, PC> {
type Ceiling = PC;
}
unsafe impl<T, RC> ResourceLike for Resource<T, RC> {
type Ceiling = RC;
}
/// Type-level `>=` operator
///
/// Do not implement this trait yourself. This is an implementation detail.
pub unsafe trait GreaterThanOrEqual<RHS> {}
/// Type-level `<=` operator
///
/// Do not implement this trait yourself. This is an implementation detail.
pub unsafe trait LessThanOrEqual<RHS> {}
/// A macro to assign ceilings to peripherals
///
/// **NOTE** A peripheral instance, like RCC, can only be bound to a *single*
/// ceiling. Trying to use this macro to bind the same peripheral to several
/// ceiling will result in a compiler error.
///
/// # Example
///
/// ``` ignore
/// #[macro_use]
/// extern crate cortex_m_rtfm;
/// // device crate generated using `svd2rust`
/// extern crate stm32f30x;
///
/// peripherals!(stm32f30x, {
/// GPIOA: Peripheral {
/// register_block: Gpioa,
/// ceiling: C1,
/// },
/// RCC: Peripheral {
/// register_block: Rcc,
/// ceiling: C0,
/// },
/// });
/// ```
#[macro_export]
macro_rules! peripherals {
($device:ident, {
$($PERIPHERAL:ident: Peripheral {
register_block: $RegisterBlock:ident,
ceiling: $C:ident,
},)+
}) => {
$(
#[allow(private_no_mangle_statics)]
#[no_mangle]
static $PERIPHERAL:
$crate::Peripheral<::$device::$RegisterBlock, $crate::$C> =
unsafe { $crate::Peripheral::_new(::$device::$PERIPHERAL) };
)+
}
}
/// A macro to declare tasks
///
/// **NOTE** This macro will expand to a `main` function.
///
/// Each `$task` is bound to an `$Interrupt` handler and has a priority `$P`.
/// The minimum priority of a task is `P1`. `$enabled` indicates whether the
/// task will be enabled before `idle` runs.
///
/// The `$Interrupt` handlers are defined in the `$device` crate.
///
/// Apart from defining the listed `$tasks`, the `init` and `idle` functions
/// must be defined as well. `init` has signature `fn(P0, &TMax)`, and `idle`
/// has signature `fn(P0) -> !`.
///
/// # Example
///
/// ``` ignore
/// #[feature(used)]
/// #[no_std]
///
/// extern crate cortex_m_rt;
/// #[macro_use]
/// extern crate cortex_m_rtfm as rtfm;
/// // device crate generated using `svd2rust`
/// extern crate stm32f30x;
///
/// use rtfm::{P0, P1, P2, T0, T1, T2, TMax};
/// use stm32f30x::interrupt::{Exti0, Tim7};
///
/// tasks!(stm32f30x, {
/// periodic: Task {
/// interrupt: Tim7,
/// priority: P1,
/// enabled: true,
/// },
/// button: Task {
/// interrupt: Exti0,
/// priority: P2,
/// enabled: true,
/// },
/// });
///
/// fn init(priority: P0, threshold: &TMax) {
/// // ..
/// }
///
/// fn idle(priority: P0, threshold: T0) -> ! {
/// // Sleep
/// loop {
/// rtfm::wfi();
/// }
/// }
///
/// // NOTE signature must match the tasks! declaration
/// fn periodic(task: Tim7, priority: P1, threshold: T1) {
/// // ..
/// }
///
/// fn button(task: Exti0, priority: P2, threshold: T2) {
/// // ..
/// }
/// ```
#[macro_export]
macro_rules! tasks {
($device:ident, {
$($task:ident: Task {
interrupt:$Interrupt:ident,
priority: $P:ident,
enabled: $enabled:expr,
},)*
}) => {
fn main() {
$crate::atomic(|t_max| {
fn validate_signature(_: fn($crate::P0, &$crate::TMax)) {}
validate_signature(init);
let p0 = unsafe { ::core::mem::transmute::<_, P0>(()) };
init(p0, t_max);
set_priorities();
enable_tasks();
});
fn validate_signature(_: fn($crate::P0, $crate::T0) -> !) {}
validate_signature(idle);
let p0 = unsafe { ::core::mem::transmute::<_, P0>(()) };
let t0 = unsafe { ::core::mem::transmute::<_, T0>(()) };
idle(p0, t0);
fn set_priorities() {
// NOTE(safe) this function runs in an interrupt free context
let _nvic = unsafe { &*$crate::_NVIC.get() };
$(
{
let hw = $crate::$P::_hw();
unsafe {
_nvic.set_priority(
::$device::interrupt::Interrupt::$Interrupt,
hw,
);
}
}
)*
// TODO freeze the NVIC.IPR register using the MPU, if available
}
fn enable_tasks() {
// NOTE(safe) this function runs in an interrupt free context
let _nvic = unsafe { &*$crate::_NVIC.get() };
$(
if $enabled {
$crate::enable(::$task);
}
)*
}
#[allow(dead_code)]
#[link_section = ".rodata.interrupts"]
#[used]
static INTERRUPTS: ::$device::interrupt::Handlers =
::$device::interrupt::Handlers {
$(
$Interrupt: {
extern "C" fn $task(
task: ::$device::interrupt::$Interrupt
) {
fn validate_signature<N>(
_: fn(::$device::interrupt::$Interrupt,
$crate::Priority<N>,
$crate::Threshold<N>)) {}
validate_signature(::$task);
let p = unsafe {
::core::mem::transmute::<_, $crate::$P>(())
};
let t = unsafe {
::core::mem::transmute(())
};
$crate::_validate_priority(&p);
::$task(task, p, t)
}
$task
},
)*
..::$device::interrupt::DEFAULT_HANDLERS
};
}
}
}
include!(concat!(env!("OUT_DIR"), "/prio.rs"));