rtic/rtic-monotonics/src/systick.rs
2023-04-15 19:19:49 +02:00

205 lines
5.9 KiB
Rust

//! [`Monotonic`] based on Cortex-M SysTick. Note: this implementation is inefficient as it
//! ticks and generates interrupts at a constant rate.
//!
//! Currently, the following tick rates are supported:
//!
//! | Feature | Tick rate | Precision |
//! |:----------------:|----------:|----------:|
//! | (none / default) | 1 Hz | 1 ms |
//! | systick-100hz | 100 Hz | 10 ms |
//! | systick-10khz | 10 KHz | 0.1 ms |
//! # Example
//!
//! ```
//! use rtic_monotonics::systick::*;
//!
//! fn init() {
//! # // This is normally provided by the selected PAC
//! # let systick = unsafe { core::mem::transmute(()) };
//! // Generate the required token
//! let systick_token = rtic_monotonics::create_systick_token!();
//!
//! // Start the monotonic
//! Systick::start(systick, 12_000_000, systick_token);
//! }
//!
//! async fn usage() {
//! loop {
//! // Use the monotonic
//! Systick::delay(100.millis()).await;
//! }
//! }
//! ```
use super::Monotonic;
pub use super::{TimeoutError, TimerQueue};
use atomic_polyfill::{AtomicU32, Ordering};
use core::future::Future;
use cortex_m::peripheral::SYST;
pub use fugit::{self, ExtU32};
// Features should be additive, here systick-100hz gets picked if both
// `systick-100hz` and `systick-10khz` are enabled.
cfg_if::cfg_if! {
if #[cfg(feature = "systick-100hz")]
{
const TIMER_HZ: u32 = 100;
} else if #[cfg(feature = "systick-10khz")]
{
const TIMER_HZ: u32 = 10_000;
} else {
// Default case is 1 kHz
const TIMER_HZ: u32 = 1_000;
}
}
/// Systick implementing `rtic_monotonic::Monotonic` which runs at 1 kHz, 100Hz or 10 kHz.
pub struct Systick;
impl Systick {
/// Start a `Monotonic` based on SysTick.
///
/// The `sysclk` parameter is the speed at which SysTick runs at. This value should come from
/// the clock generation function of the used HAL.
///
/// Notice that the actual rate of the timer is a best approximation based on the given
/// `sysclk` and `TIMER_HZ`.
///
/// Note: Give the return value to `TimerQueue::initialize()` to initialize the timer queue.
pub fn start(
mut systick: cortex_m::peripheral::SYST,
sysclk: u32,
_interrupt_token: impl crate::InterruptToken<Self>,
) {
// + TIMER_HZ / 2 provides round to nearest instead of round to 0.
// - 1 as the counter range is inclusive [0, reload]
let reload = (sysclk + TIMER_HZ / 2) / TIMER_HZ - 1;
assert!(reload <= 0x00ff_ffff);
assert!(reload > 0);
systick.disable_counter();
systick.set_clock_source(cortex_m::peripheral::syst::SystClkSource::Core);
systick.set_reload(reload);
systick.enable_interrupt();
systick.enable_counter();
SYSTICK_TIMER_QUEUE.initialize(Systick {});
}
fn systick() -> SYST {
unsafe { core::mem::transmute::<(), SYST>(()) }
}
}
static SYSTICK_CNT: AtomicU32 = AtomicU32::new(0);
static SYSTICK_TIMER_QUEUE: TimerQueue<Systick> = TimerQueue::new();
// Forward timerqueue interface
impl Systick {
/// Used to access the underlying timer queue
#[doc(hidden)]
pub fn __tq() -> &'static TimerQueue<Systick> {
&SYSTICK_TIMER_QUEUE
}
/// Timeout at a specific time.
pub async fn timeout_at<F: Future>(
instant: <Self as Monotonic>::Instant,
future: F,
) -> Result<F::Output, TimeoutError> {
SYSTICK_TIMER_QUEUE.timeout_at(instant, future).await
}
/// Timeout after a specific duration.
#[inline]
pub async fn timeout_after<F: Future>(
duration: <Self as Monotonic>::Duration,
future: F,
) -> Result<F::Output, TimeoutError> {
SYSTICK_TIMER_QUEUE.timeout_after(duration, future).await
}
/// Delay for some duration of time.
#[inline]
pub async fn delay(duration: <Self as Monotonic>::Duration) {
SYSTICK_TIMER_QUEUE.delay(duration).await;
}
/// Delay to some specific time instant.
pub async fn delay_until(instant: <Self as Monotonic>::Instant) {
SYSTICK_TIMER_QUEUE.delay_until(instant).await;
}
}
impl Monotonic for Systick {
type Instant = fugit::TimerInstantU32<TIMER_HZ>;
type Duration = fugit::TimerDurationU32<TIMER_HZ>;
const ZERO: Self::Instant = Self::Instant::from_ticks(0);
fn now() -> Self::Instant {
if Self::systick().has_wrapped() {
SYSTICK_CNT.fetch_add(1, Ordering::AcqRel);
}
Self::Instant::from_ticks(SYSTICK_CNT.load(Ordering::Relaxed))
}
fn set_compare(_: Self::Instant) {
// No need to do something here, we get interrupts anyway.
}
fn clear_compare_flag() {
// NOOP with SysTick interrupt
}
fn pend_interrupt() {
cortex_m::peripheral::SCB::set_pendst();
}
fn on_interrupt() {
if Self::systick().has_wrapped() {
SYSTICK_CNT.fetch_add(1, Ordering::AcqRel);
}
}
fn enable_timer() {}
fn disable_timer() {}
}
#[cfg(feature = "embedded-hal-async")]
impl embedded_hal_async::delay::DelayUs for Systick {
type Error = core::convert::Infallible;
async fn delay_us(&mut self, us: u32) -> Result<(), Self::Error> {
SYSTICK_TIMER_QUEUE.delay(us.micros()).await;
Ok(())
}
async fn delay_ms(&mut self, ms: u32) -> Result<(), Self::Error> {
SYSTICK_TIMER_QUEUE.delay(ms.millis()).await;
Ok(())
}
}
/// Register the Systick interrupt for the monotonic.
#[macro_export]
macro_rules! create_systick_token {
() => {{
#[no_mangle]
#[allow(non_snake_case)]
unsafe extern "C" fn SysTick() {
$crate::systick::Systick::__tq().on_monotonic_interrupt();
}
pub struct SystickToken;
unsafe impl $crate::InterruptToken<$crate::systick::Systick> for SystickToken {}
SystickToken
}};
}