rtic/rtic-monotonics/src/stm32.rs
Henrik Tjäder 918f9c3f13
Breaking change: portable-atomic (#922)
* Atomics: Replace polyfill with portable-atomic

* Update Cargo.lock for examples

* RTIC: portable-atomic: Update changelog

* rtic-monotonics: portable-atomic: Update changelog

* lm3s6965: enable critical-section when testing

* xtask: Enable portable-atomic/critical-section

When dealing with rtic-monotonics

* rtic-monotonics: portable-atomics: Do not disable the ability to fallback

---------

Co-authored-by: Emil Fresk <emil.fresk@gmail.com>
2024-06-23 06:45:49 +00:00

347 lines
11 KiB
Rust

//! [`Monotonic`](rtic_time::Monotonic) implementations for STM32 chips.
//!
//! Not all timers are available on all parts. Ensure that only available
//! timers are exposed by having the correct `stm32*` feature enabled for `rtic-monotonics`.
//!
//! # Example
//!
//! ```
//! use rtic_monotonics::stm32::prelude::*;
//!
//! // Define the monotonic and set it to 1MHz tick rate
//! stm32_tim2_monotonic!(Mono, 1_000_000);
//!
//! fn init() {
//! // If using `embassy-stm32` HAL, timer clock can be read out like this:
//! let timer_clock_hz = embassy_stm32::peripherals::TIM2::frequency();
//! // Or define it manually if you are using other HAL or know correct frequency:
//! let timer_clock_hz = 64_000_000;
//!
//! // Start the monotonic
//! Mono::start(timer_clock_hz);
//! }
//!
//! async fn usage() {
//! loop {
//! // Use the monotonic
//! let timestamp = Mono::now();
//! Mono::delay(100.millis()).await;
//! }
//! }
//! ```
/// Common definitions and traits for using the STM32 monotonics
pub mod prelude {
#[cfg(feature = "stm32_tim2")]
pub use crate::stm32_tim2_monotonic;
#[cfg(feature = "stm32_tim3")]
pub use crate::stm32_tim3_monotonic;
#[cfg(feature = "stm32_tim4")]
pub use crate::stm32_tim4_monotonic;
#[cfg(feature = "stm32_tim5")]
pub use crate::stm32_tim5_monotonic;
#[cfg(feature = "stm32_tim15")]
pub use crate::stm32_tim15_monotonic;
pub use crate::Monotonic;
pub use fugit::{self, ExtU64, ExtU64Ceil};
}
use portable_atomic::{AtomicU64, Ordering};
use rtic_time::{
half_period_counter::calculate_now,
timer_queue::{TimerQueue, TimerQueueBackend},
};
use stm32_metapac as pac;
mod _generated {
#![allow(dead_code)]
#![allow(unused_imports)]
#![allow(non_snake_case)]
include!(concat!(env!("OUT_DIR"), "/_generated.rs"));
}
#[doc(hidden)]
#[macro_export]
macro_rules! __internal_create_stm32_timer_interrupt {
($mono_backend:ident, $interrupt_name:ident) => {
#[no_mangle]
#[allow(non_snake_case)]
unsafe extern "C" fn $interrupt_name() {
use $crate::TimerQueueBackend;
$crate::stm32::$mono_backend::timer_queue().on_monotonic_interrupt();
}
};
}
#[doc(hidden)]
#[macro_export]
macro_rules! __internal_create_stm32_timer_struct {
($name:ident, $mono_backend:ident, $timer:ident, $tick_rate_hz:expr) => {
/// A `Monotonic` based on an STM32 timer peripheral.
pub struct $name;
impl $name {
/// Starts the `Monotonic`.
///
/// - `tim_clock_hz`: `TIMx` peripheral clock frequency.
///
/// Panics if it is impossible to achieve the desired monotonic tick rate based
/// on the given `tim_clock_hz` parameter. If that happens, adjust the desired monotonic tick rate.
///
/// This method must be called only once.
pub fn start(tim_clock_hz: u32) {
$crate::__internal_create_stm32_timer_interrupt!($mono_backend, $timer);
$crate::stm32::$mono_backend::_start(tim_clock_hz, $tick_rate_hz);
}
}
impl $crate::TimerQueueBasedMonotonic for $name {
type Backend = $crate::stm32::$mono_backend;
type Instant = $crate::fugit::Instant<
<Self::Backend as $crate::TimerQueueBackend>::Ticks,
1,
{ $tick_rate_hz },
>;
type Duration = $crate::fugit::Duration<
<Self::Backend as $crate::TimerQueueBackend>::Ticks,
1,
{ $tick_rate_hz },
>;
}
$crate::rtic_time::impl_embedded_hal_delay_fugit!($name);
$crate::rtic_time::impl_embedded_hal_async_delay_fugit!($name);
};
}
/// Create a TIM2 based monotonic and register the TIM2 interrupt for it.
///
/// See [`crate::stm32`] for more details.
///
/// # Arguments
///
/// * `name` - The name that the monotonic type will have.
/// * `tick_rate_hz` - The tick rate of the timer peripheral.
///
#[cfg(feature = "stm32_tim2")]
#[macro_export]
macro_rules! stm32_tim2_monotonic {
($name:ident, $tick_rate_hz:expr) => {
$crate::__internal_create_stm32_timer_struct!($name, Tim2Backend, TIM2, $tick_rate_hz);
};
}
/// Create a TIM3 based monotonic and register the TIM3 interrupt for it.
///
/// See [`crate::stm32`] for more details.
///
/// # Arguments
///
/// * `name` - The name that the monotonic type will have.
/// * `tick_rate_hz` - The tick rate of the timer peripheral.
///
#[cfg(feature = "stm32_tim3")]
#[macro_export]
macro_rules! stm32_tim3_monotonic {
($name:ident, $tick_rate_hz:expr) => {
$crate::__internal_create_stm32_timer_struct!($name, Tim3Backend, TIM3, $tick_rate_hz);
};
}
/// Create a TIM4 based monotonic and register the TIM4 interrupt for it.
///
/// See [`crate::stm32`] for more details.
///
/// # Arguments
///
/// * `name` - The name that the monotonic type will have.
/// * `tick_rate_hz` - The tick rate of the timer peripheral.
///
#[cfg(feature = "stm32_tim4")]
#[macro_export]
macro_rules! stm32_tim4_monotonic {
($name:ident, $tick_rate_hz:expr) => {
$crate::__internal_create_stm32_timer_struct!($name, Tim4Backend, TIM4, $tick_rate_hz);
};
}
/// Create a TIM5 based monotonic and register the TIM5 interrupt for it.
///
/// See [`crate::stm32`] for more details.
///
/// # Arguments
///
/// * `name` - The name that the monotonic type will have.
/// * `tick_rate_hz` - The tick rate of the timer peripheral.
///
#[cfg(feature = "stm32_tim5")]
#[macro_export]
macro_rules! stm32_tim5_monotonic {
($name:ident, $tick_rate_hz:expr) => {
$crate::__internal_create_stm32_timer_struct!($name, Tim5Backend, TIM5, $tick_rate_hz);
};
}
/// Create a TIM15 based monotonic and register the TIM15 interrupt for it.
///
/// See [`crate::stm32`] for more details.
///
/// # Arguments
///
/// * `name` - The name that the monotonic type will have.
/// * `tick_rate_hz` - The tick rate of the timer peripheral.
///
#[cfg(feature = "stm32_tim15")]
#[macro_export]
macro_rules! stm32_tim15_monotonic {
($name:ident, $tick_rate_hz:expr) => {
$crate::__internal_create_stm32_timer_struct!($name, Tim15Backend, TIM15, $tick_rate_hz);
};
}
macro_rules! make_timer {
($backend_name:ident, $timer:ident, $bits:ident, $overflow:ident, $tq:ident$(, doc: ($($doc:tt)*))?) => {
/// Monotonic timer backend implementation.
$(
#[cfg_attr(docsrs, doc(cfg($($doc)*)))]
)?
pub struct $backend_name;
use pac::$timer;
static $overflow: AtomicU64 = AtomicU64::new(0);
static $tq: TimerQueue<$backend_name> = TimerQueue::new();
impl $backend_name {
/// Starts the timer.
///
/// **Do not use this function directly.**
///
/// Use the prelude macros instead.
pub fn _start(tim_clock_hz: u32, timer_hz: u32) {
_generated::$timer::enable();
_generated::$timer::reset();
$timer.cr1().modify(|r| r.set_cen(false));
assert!((tim_clock_hz % timer_hz) == 0, "Unable to find suitable timer prescaler value!");
let psc = tim_clock_hz / timer_hz - 1;
$timer.psc().write(|r| r.set_psc(psc as u16));
// Enable full-period interrupt.
$timer.dier().modify(|r| r.set_uie(true));
// Configure and enable half-period interrupt
$timer.ccr(2).write(|r| r.set_ccr(($bits::MAX - ($bits::MAX >> 1)).into()));
$timer.dier().modify(|r| r.set_ccie(2, true));
// Trigger an update event to load the prescaler value to the clock.
$timer.egr().write(|r| r.set_ug(true));
// The above line raises an update event which will indicate that the timer is already finished.
// Since this is not the case, it should be cleared.
$timer.sr().modify(|r| r.set_uif(false));
$tq.initialize(Self {});
$overflow.store(0, Ordering::SeqCst);
// Start the counter.
$timer.cr1().modify(|r| {
r.set_cen(true);
});
// SAFETY: We take full ownership of the peripheral and interrupt vector,
// plus we are not using any external shared resources so we won't impact
// basepri/source masking based critical sections.
unsafe {
crate::set_monotonic_prio(_generated::NVIC_PRIO_BITS, pac::Interrupt::$timer);
cortex_m::peripheral::NVIC::unmask(pac::Interrupt::$timer);
}
}
}
impl TimerQueueBackend for $backend_name {
type Ticks = u64;
fn now() -> Self::Ticks {
calculate_now(
|| $overflow.load(Ordering::Relaxed),
|| $timer.cnt().read().cnt()
)
}
fn set_compare(instant: Self::Ticks) {
let now = Self::now();
// Since the timer may or may not overflow based on the requested compare val, we check how many ticks are left.
// `wrapping_sup` takes care of the u64 integer overflow special case.
let val = if instant.wrapping_sub(now) <= ($bits::MAX as u64) {
instant as $bits
} else {
// In the past or will overflow
0
};
$timer.ccr(1).write(|r| r.set_ccr(val.into()));
}
fn clear_compare_flag() {
$timer.sr().modify(|r| r.set_ccif(1, false));
}
fn pend_interrupt() {
cortex_m::peripheral::NVIC::pend(pac::Interrupt::$timer);
}
fn enable_timer() {
$timer.dier().modify(|r| r.set_ccie(1, true));
}
fn disable_timer() {
$timer.dier().modify(|r| r.set_ccie(1, false));
}
fn on_interrupt() {
// Full period
if $timer.sr().read().uif() {
$timer.sr().modify(|r| r.set_uif(false));
let prev = $overflow.fetch_add(1, Ordering::Relaxed);
assert!(prev % 2 == 1, "Monotonic must have missed an interrupt!");
}
// Half period
if $timer.sr().read().ccif(2) {
$timer.sr().modify(|r| r.set_ccif(2, false));
let prev = $overflow.fetch_add(1, Ordering::Relaxed);
assert!(prev % 2 == 0, "Monotonic must have missed an interrupt!");
}
}
fn timer_queue() -> &'static TimerQueue<$backend_name> {
&$tq
}
}
};
}
#[cfg(feature = "stm32_tim2")]
make_timer!(Tim2Backend, TIM2, u32, TIMER2_OVERFLOWS, TIMER2_TQ);
#[cfg(feature = "stm32_tim3")]
make_timer!(Tim3Backend, TIM3, u16, TIMER3_OVERFLOWS, TIMER3_TQ);
#[cfg(feature = "stm32_tim4")]
make_timer!(Tim4Backend, TIM4, u16, TIMER4_OVERFLOWS, TIMER4_TQ);
#[cfg(feature = "stm32_tim5")]
make_timer!(Tim5Backend, TIM5, u16, TIMER5_OVERFLOWS, TIMER5_TQ);
#[cfg(feature = "stm32_tim15")]
make_timer!(Tim15Backend, TIM15, u16, TIMER15_OVERFLOWS, TIMER15_TQ);