rtic/examples/schedule.rs
Jorge Aparicio eef4e7bf79 more monotonic timer docs
covers

- initialization and configuration of the timer; this is now a responsibility of
  the application author
- correctness of `Monotonic::now()` in `#[init]`
- safety of `Monotonic::reset()`

closes #251
2019-10-15 18:44:49 -05:00

47 lines
1.3 KiB
Rust

//! examples/schedule.rs
#![deny(warnings)]
#![no_main]
#![no_std]
use cortex_m_semihosting::hprintln;
use panic_halt as _;
use rtfm::cyccnt::{Instant, U32Ext as _};
// NOTE: does NOT work on QEMU!
#[rtfm::app(device = lm3s6965, monotonic = rtfm::cyccnt::CYCCNT)]
const APP: () = {
#[init(schedule = [foo, bar])]
fn init(mut cx: init::Context) {
// Initialize (enable) the monotonic timer (CYCCNT)
cx.core.DCB.enable_trace();
// required on devices that software lock the DWT (e.g. STM32F7)
unsafe { cx.core.DWT.lar.write(0xC5ACCE55) }
cx.core.DWT.enable_cycle_counter();
// semantically, the monotonic timer is frozen at time "zero" during `init`
let now = cx.start; // the start time of the system
hprintln!("init @ {:?}", now).unwrap();
// Schedule `foo` to run 8e6 cycles (clock cycles) in the future
cx.schedule.foo(now + 8_000_000.cycles()).unwrap();
// Schedule `bar` to run 4e6 cycles in the future
cx.schedule.bar(now + 4_000_000.cycles()).unwrap();
}
#[task]
fn foo(_: foo::Context) {
hprintln!("foo @ {:?}", Instant::now()).unwrap();
}
#[task]
fn bar(_: bar::Context) {
hprintln!("bar @ {:?}", Instant::now()).unwrap();
}
extern "C" {
fn UART0();
}
};