rtic/rtic-monotonics/src/nrf/rtc.rs
2023-04-04 21:40:19 +02:00

241 lines
8.2 KiB
Rust

//! RTIC Monotonic impl for the nRF RTCs.
//!
//! # Example
//!
//! ```
//! use rtic_monotonics::nrf::rtc::*;
//!
//! fn init() {
//! # // This is normally provided by the selected PAC
//! # let rtc = unsafe { core::mem::transmute(()) };
//! // Generate the required token
//! let token = rtic_monotonics::create_nrf_rtc0_monotonic_token!();
//!
//! // Start the monotonic
//! Rtc0::start(rtc, token);
//! }
//!
//! async fn usage() {
//! loop {
//! // Use the monotonic
//! Rtc0::delay(100.millis()).await;
//! }
//! }
//! ```
#[cfg(feature = "nrf52810")]
use nrf52810_pac::{self as pac, Interrupt, RTC0, RTC1};
#[cfg(feature = "nrf52811")]
use nrf52811_pac::{self as pac, Interrupt, RTC0, RTC1};
#[cfg(feature = "nrf52832")]
use nrf52832_pac::{self as pac, Interrupt, RTC0, RTC1, RTC2};
#[cfg(feature = "nrf52833")]
use nrf52833_pac::{self as pac, Interrupt, RTC0, RTC1, RTC2};
#[cfg(feature = "nrf52840")]
use nrf52840_pac::{self as pac, Interrupt, RTC0, RTC1, RTC2};
#[cfg(feature = "nrf5340-app")]
use nrf5340_app_pac::{self as pac, Interrupt, RTC0_NS as RTC0, RTC1_NS as RTC1};
#[cfg(feature = "nrf5340-net")]
use nrf5340_net_pac::{self as pac, Interrupt, RTC0_NS as RTC0, RTC1_NS as RTC1};
#[cfg(feature = "nrf9160")]
use nrf9160_pac::{self as pac, Interrupt, RTC0_NS as RTC0, RTC1_NS as RTC1};
use super::super::Monotonic;
pub use super::super::{TimeoutError, TimerQueue};
use atomic_polyfill::{AtomicU32, Ordering};
use core::future::Future;
pub use fugit::{self, ExtU64};
#[doc(hidden)]
#[macro_export]
macro_rules! __internal_create_nrf_rtc_interrupt {
($mono_timer:ident, $rtc:ident, $rtc_token:ident) => {{
#[no_mangle]
#[allow(non_snake_case)]
unsafe extern "C" fn $rtc() {
$crate::nrf::rtc::$mono_timer::__tq().on_monotonic_interrupt();
}
pub struct $rtc_token;
unsafe impl $crate::InterruptToken<$crate::nrf::rtc::$mono_timer> for $rtc_token {}
$rtc_token
}};
}
/// Register the Rtc0 interrupt for the monotonic.
#[macro_export]
macro_rules! create_nrf_rtc0_monotonic_token {
() => {{
$crate::__internal_create_nrf_rtc_interrupt!(Rtc0, RTC0, Rtc0Token)
}};
}
/// Register the Rtc1 interrupt for the monotonic.
#[macro_export]
macro_rules! create_nrf_rtc1_monotonic_token {
() => {{
$crate::__internal_create_nrf_rtc_interrupt!(Rtc1, RTC1, Rtc1Token)
}};
}
/// Register the Rtc2 interrupt for the monotonic.
#[cfg(any(feature = "nrf52832", feature = "nrf52833", feature = "nrf52840"))]
#[macro_export]
macro_rules! create_nrf_rtc2_monotonic_token {
() => {{
$crate::__internal_create_nrf_rtc_interrupt!(Rtc2, RTC2, Rtc2Token)
}};
}
macro_rules! make_rtc {
($mono_name:ident, $rtc:ident, $overflow:ident, $tq:ident) => {
/// Monotonic timer queue implementation.
pub struct $mono_name;
static $overflow: AtomicU32 = AtomicU32::new(0);
static $tq: TimerQueue<$mono_name> = TimerQueue::new();
impl $mono_name {
/// Start the timer monotonic.
pub fn start(rtc: $rtc, _interrupt_token: impl crate::InterruptToken<Self>) {
unsafe { rtc.prescaler.write(|w| w.bits(0)) };
rtc.intenset.write(|w| w.compare0().set().ovrflw().set());
rtc.evtenset.write(|w| w.compare0().set().ovrflw().set());
rtc.tasks_clear.write(|w| unsafe { w.bits(1) });
rtc.tasks_start.write(|w| unsafe { w.bits(1) });
$tq.initialize(Self {});
// SAFETY: We take full ownership of the peripheral and interrupt vector,
// plus we are not using any external shared resources so we won't impact
// basepri/source masking based critical sections.
unsafe {
crate::set_monotonic_prio(pac::NVIC_PRIO_BITS, Interrupt::$rtc);
pac::NVIC::unmask(Interrupt::$rtc);
}
}
/// Used to access the underlying timer queue
#[doc(hidden)]
pub fn __tq() -> &'static TimerQueue<$mono_name> {
&$tq
}
/// Timeout at a specific time.
#[inline]
pub async fn timeout_at<F: Future>(
instant: <Self as Monotonic>::Instant,
future: F,
) -> Result<F::Output, TimeoutError> {
$tq.timeout_at(instant, future).await
}
/// Timeout after a specific duration.
#[inline]
pub async fn timeout_after<F: Future>(
duration: <Self as Monotonic>::Duration,
future: F,
) -> Result<F::Output, TimeoutError> {
$tq.timeout_after(duration, future).await
}
/// Delay for some duration of time.
#[inline]
pub async fn delay(duration: <Self as Monotonic>::Duration) {
$tq.delay(duration).await;
}
/// Delay to some specific time instant.
#[inline]
pub async fn delay_until(instant: <Self as Monotonic>::Instant) {
$tq.delay_until(instant).await;
}
#[inline(always)]
fn is_overflow() -> bool {
let rtc = unsafe { &*$rtc::PTR };
rtc.events_ovrflw.read().bits() == 1
}
}
#[cfg(feature = "embedded-hal-async")]
impl embedded_hal_async::delay::DelayUs for $mono_name {
type Error = core::convert::Infallible;
#[inline]
async fn delay_us(&mut self, us: u32) -> Result<(), Self::Error> {
$tq.delay((us as u64).micros()).await;
Ok(())
}
#[inline]
async fn delay_ms(&mut self, ms: u32) -> Result<(), Self::Error> {
$tq.delay((ms as u64).millis()).await;
Ok(())
}
}
impl Monotonic for $mono_name {
const ZERO: Self::Instant = Self::Instant::from_ticks(0);
type Instant = fugit::TimerInstantU64<32_768>;
type Duration = fugit::TimerDurationU64<32_768>;
fn now() -> Self::Instant {
// In a critical section to not get a race between overflow updates and reading it
// and the flag here.
critical_section::with(|_| {
let rtc = unsafe { &*$rtc::PTR };
let cnt = rtc.counter.read().bits() as u64;
let ovf = if Self::is_overflow() {
$overflow.load(Ordering::Relaxed) + 1
} else {
$overflow.load(Ordering::Relaxed)
} as u64;
Self::Instant::from_ticks((ovf << 24) | cnt)
})
}
fn on_interrupt() {
let rtc = unsafe { &*$rtc::PTR };
if Self::is_overflow() {
$overflow.fetch_add(1, Ordering::SeqCst);
rtc.events_ovrflw.write(|w| unsafe { w.bits(0) });
}
}
// NOTE: To fix errata for RTC, if the release time is within 4 ticks
// we release as the RTC will not generate a compare interrupt...
fn should_dequeue_check(release_at: Self::Instant) -> bool {
Self::now() + <Self as Monotonic>::Duration::from_ticks(4) >= release_at
}
fn enable_timer() {}
fn disable_timer() {}
fn set_compare(instant: Self::Instant) {
let rtc = unsafe { &*$rtc::PTR };
unsafe { rtc.cc[0].write(|w| w.bits(instant.ticks() as u32 & 0xffffff)) };
}
fn clear_compare_flag() {
let rtc = unsafe { &*$rtc::PTR };
unsafe { rtc.events_compare[0].write(|w| w.bits(0)) };
}
fn pend_interrupt() {
pac::NVIC::pend(Interrupt::$rtc);
}
}
};
}
make_rtc!(Rtc0, RTC0, RTC0_OVERFLOWS, RTC0_TQ);
make_rtc!(Rtc1, RTC1, RTC1_OVERFLOWS, RTC1_TQ);
#[cfg(any(feature = "nrf52832", feature = "nrf52833", feature = "nrf52840"))]
make_rtc!(Rtc2, RTC2, RTC2_OVERFLOWS, RTC2_TQ);