rtic/rtic-time/tests/timer_queue.rs
datdenkikniet 53fbf30514 Clean up
2023-04-10 13:19:23 +02:00

281 lines
6.9 KiB
Rust

//! A test that verifies the correctness of the [`TimerQueue`].
//!
//! To run this test, you need to activate the `critical-section/std` feature.
use std::{
fmt::Debug,
task::{Poll, Waker},
};
use cassette::{pin_mut, Cassette};
use parking_lot::Mutex;
use rtic_time::{Monotonic, TimerQueue};
static NOW: Mutex<Option<Instant>> = Mutex::new(None);
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Debug)]
pub struct Duration(u64);
impl Duration {
pub fn from_ticks(millis: u64) -> Self {
Self(millis)
}
pub fn as_ticks(&self) -> u64 {
self.0
}
}
impl core::ops::Add<Duration> for Duration {
type Output = Duration;
fn add(self, rhs: Duration) -> Self::Output {
Self(self.0 + rhs.0)
}
}
impl From<Duration> for Instant {
fn from(value: Duration) -> Self {
Instant(value.0)
}
}
static WAKERS: Mutex<Vec<Waker>> = Mutex::new(Vec::new());
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Debug)]
pub struct Instant(u64);
impl Instant {
const ZERO: Self = Self(0);
pub fn tick() -> bool {
// If we've never ticked before, initialize the clock.
if NOW.lock().is_none() {
*NOW.lock() = Some(Instant::ZERO);
}
// We've ticked before, add one to the clock
else {
let now = Instant::now();
let new_time = now + Duration(1);
*NOW.lock() = Some(new_time);
}
let had_wakers = !WAKERS.lock().is_empty();
// Wake up all things waiting for a specific time to happen.
for waker in WAKERS.lock().drain(..) {
waker.wake_by_ref();
}
let had_interrupt = TestMono::tick(false);
had_interrupt || had_wakers
}
pub fn now() -> Self {
NOW.lock().clone().unwrap_or(Instant::ZERO)
}
pub fn elapsed(&self) -> Duration {
Duration(Self::now().0 - self.0)
}
pub async fn wait_until(time: Instant) {
core::future::poll_fn(|ctx| {
if Instant::now() >= time {
Poll::Ready(())
} else {
WAKERS.lock().push(ctx.waker().clone());
Poll::Pending
}
})
.await;
}
}
impl From<u64> for Instant {
fn from(value: u64) -> Self {
Self(value)
}
}
impl core::ops::Add<Duration> for Instant {
type Output = Instant;
fn add(self, rhs: Duration) -> Self::Output {
Self(self.0 + rhs.0)
}
}
impl core::ops::Sub<Duration> for Instant {
type Output = Instant;
fn sub(self, rhs: Duration) -> Self::Output {
Self(self.0 - rhs.0)
}
}
impl core::ops::Sub<Instant> for Instant {
type Output = Duration;
fn sub(self, rhs: Instant) -> Self::Output {
Duration(self.0 - rhs.0)
}
}
static COMPARE: Mutex<Option<Instant>> = Mutex::new(None);
static TIMER_QUEUE: TimerQueue<TestMono> = TimerQueue::new();
pub struct TestMono;
impl TestMono {
pub fn tick(force_interrupt: bool) -> bool {
let now = Instant::now();
let compare_reached = Some(now) == Self::compare();
let interrupt = compare_reached || force_interrupt;
if interrupt {
unsafe {
TestMono::queue().on_monotonic_interrupt();
}
true
} else {
false
}
}
/// Initialize the monotonic.
pub fn init() {
Self::queue().initialize(Self);
}
/// Used to access the underlying timer queue
pub fn queue() -> &'static TimerQueue<TestMono> {
&TIMER_QUEUE
}
pub fn compare() -> Option<Instant> {
COMPARE.lock().clone()
}
}
impl Monotonic for TestMono {
const ZERO: Self::Instant = Instant::ZERO;
type Instant = Instant;
type Duration = Duration;
fn now() -> Self::Instant {
Instant::now()
}
fn set_compare(instant: Self::Instant) {
let _ = COMPARE.lock().insert(instant);
}
fn clear_compare_flag() {}
fn pend_interrupt() {
Self::tick(true);
}
}
#[test]
fn timer_queue() {
TestMono::init();
let start = Instant::ZERO;
let build_delay_test = |pre_delay: Option<u64>, delay: u64| {
let delay = Duration::from_ticks(delay);
let pre_delay = pre_delay.map(Duration::from_ticks);
let total = if let Some(pre_delay) = pre_delay {
pre_delay + delay
} else {
delay
};
let total_millis = total.as_ticks();
async move {
// A `pre_delay` simulates a delay in scheduling,
// without the `pre_delay` being present in the timer
// queue
if let Some(pre_delay) = pre_delay {
Instant::wait_until(start + pre_delay).await;
}
TestMono::queue().delay(delay).await;
let elapsed = start.elapsed().as_ticks();
println!("{total_millis} ticks delay reached after {elapsed} ticks");
if elapsed != total_millis {
panic!(
"{total_millis} ticks delay was not on time ({elapsed} ticks passed instead)"
);
}
}
};
let d1 = build_delay_test(Some(100), 100);
pin_mut!(d1);
let mut d1 = Cassette::new(d1);
let d2 = build_delay_test(None, 300);
pin_mut!(d2);
let mut d2 = Cassette::new(d2);
let d3 = build_delay_test(None, 400);
pin_mut!(d3);
let mut d3 = Cassette::new(d3);
macro_rules! try_poll {
($fut:ident) => {
if !$fut.is_done() {
$fut.poll_on();
}
};
}
// Do an initial poll to set up all of the waiting futures
try_poll!(d1);
try_poll!(d2);
try_poll!(d3);
for _ in 0..500 {
// We only poll the waiting futures if an
// interrupt occured or if an artificial delay
// has passed.
if Instant::tick() {
try_poll!(d1);
try_poll!(d2);
try_poll!(d3);
}
if Instant::now() == 0.into() {
// First, we want to be waiting for our 300 tick delay
assert_eq!(TestMono::compare(), Some(300.into()));
}
if Instant::now() == 100.into() {
// After 100 ticks, we enqueue a new delay that is supposed to last
// until the 200-tick-mark
assert_eq!(TestMono::compare(), Some(200.into()));
}
if Instant::now() == 200.into() {
// After 200 ticks, we dequeue the 200-tick-mark delay and
// requeue the 300 tick delay
assert_eq!(TestMono::compare(), Some(300.into()));
}
if Instant::now() == 300.into() {
// After 300 ticks, we dequeue the 300-tick-mark delay and
// go to the 400 tick delay that is already enqueued
assert_eq!(TestMono::compare(), Some(400.into()));
}
}
assert!(d1.is_done() && d2.is_done() && d3.is_done());
}