rtic/src/export.rs
Jorge Aparicio a452700628 implement RFCs 147 and 155, etc.
This commit:

- Implements RFC 147: "all functions must be safe"

- Implements RFC 155: "explicit Context parameter"

- Implements the pending breaking change #141: reject assign syntax in `init`
  (which was used to initialize late resources)

- Refactors code generation to make it more readable -- there are no more random
  identifiers in the output -- and align it with the book description of RTFM
  internals.

- Makes the framework hard depend on `core::mem::MaybeUninit` and thus will
  require nightly until that API is stabilized.

- Fixes a ceiling analysis bug where the priority of the system timer was not
  considered in the analysis.

- Shrinks the size of all the internal queues by turning `AtomicUsize` indices
  into `AtomicU8`s.

- Removes the integration with `owned_singleton`.
2019-05-01 20:49:25 +02:00

169 lines
3.6 KiB
Rust

//! IMPLEMENTATION DETAILS. DO NOT USE ANYTHING IN THIS MODULE
use core::{cell::Cell, u8};
#[cfg(armv7m)]
use cortex_m::register::basepri;
pub use cortex_m::{
asm::wfi, interrupt, peripheral::scb::SystemHandler, peripheral::syst::SystClkSource,
peripheral::Peripherals,
};
pub use heapless::consts;
use heapless::spsc::{Queue, SingleCore};
#[cfg(feature = "timer-queue")]
pub use crate::tq::{NotReady, TimerQueue};
pub type FreeQueue<N> = Queue<u8, N, u8, SingleCore>;
pub type ReadyQueue<T, N> = Queue<(T, u8), N, u8, SingleCore>;
#[cfg(armv7m)]
#[inline(always)]
pub fn run<F>(priority: u8, f: F)
where
F: FnOnce(),
{
if priority == 1 {
// if the priority of this interrupt is `1` then BASEPRI can only be `0`
f();
unsafe { basepri::write(0) }
} else {
let initial = basepri::read();
f();
unsafe { basepri::write(initial) }
}
}
#[cfg(not(armv7m))]
#[inline(always)]
pub fn run<F>(_priority: u8, f: F)
where
F: FnOnce(),
{
f();
}
// Newtype over `Cell` that forbids mutation through a shared reference
pub struct Priority {
inner: Cell<u8>,
}
impl Priority {
#[inline(always)]
pub unsafe fn new(value: u8) -> Self {
Priority {
inner: Cell::new(value),
}
}
// these two methods are used by `lock` (see below) but can't be used from the RTFM application
#[inline(always)]
fn set(&self, value: u8) {
self.inner.set(value)
}
#[inline(always)]
fn get(&self) -> u8 {
self.inner.get()
}
}
// We newtype `core::mem::MaybeUninit` so the end-user doesn't need `#![feature(maybe_uninit)]` in
// their code
pub struct MaybeUninit<T> {
inner: core::mem::MaybeUninit<T>,
}
impl<T> MaybeUninit<T> {
pub const fn uninit() -> Self {
MaybeUninit {
inner: core::mem::MaybeUninit::uninit(),
}
}
pub fn as_ptr(&self) -> *const T {
self.inner.as_ptr()
}
pub fn as_mut_ptr(&mut self) -> *mut T {
self.inner.as_mut_ptr()
}
pub unsafe fn read(&self) -> T {
self.inner.read()
}
pub fn write(&mut self, value: T) -> &mut T {
self.inner.write(value)
}
}
#[inline(always)]
pub fn assert_send<T>()
where
T: Send,
{
}
#[inline(always)]
pub fn assert_sync<T>()
where
T: Sync,
{
}
#[cfg(armv7m)]
#[inline(always)]
pub unsafe fn lock<T, R>(
ptr: *mut T,
priority: &Priority,
ceiling: u8,
nvic_prio_bits: u8,
f: impl FnOnce(&mut T) -> R,
) -> R {
let current = priority.get();
if current < ceiling {
if ceiling == (1 << nvic_prio_bits) {
priority.set(u8::MAX);
let r = interrupt::free(|_| f(&mut *ptr));
priority.set(current);
r
} else {
priority.set(ceiling);
basepri::write(logical2hw(ceiling, nvic_prio_bits));
let r = f(&mut *ptr);
basepri::write(logical2hw(current, nvic_prio_bits));
priority.set(current);
r
}
} else {
f(&mut *ptr)
}
}
#[cfg(not(armv7m))]
#[inline(always)]
pub unsafe fn lock<T, R>(
ptr: *mut T,
priority: &Priority,
ceiling: u8,
_nvic_prio_bits: u8,
f: impl FnOnce(&mut T) -> R,
) -> R {
let current = priority.get();
if current < ceiling {
priority.set(u8::MAX);
let r = interrupt::free(|_| f(&mut *ptr));
priority.set(current);
r
} else {
f(&mut *ptr)
}
}
#[inline]
pub fn logical2hw(logical: u8, nvic_prio_bits: u8) -> u8 {
((1 << nvic_prio_bits) - logical) << (8 - nvic_prio_bits)
}