mirror of
https://github.com/rtic-rs/rtic.git
synced 2024-12-26 11:59:33 +01:00
8c23e178f3
* Rework timer_queue and monotonic architecture Goals: * make Monotonic purely internal * make Monotonic purely tick passed, no fugit involved * create a wrapper struct in the user's code via a macro that then converts the "now" from the tick based monotonic to a fugit based timestamp We need to proxy the delay functions of the timer queue anyway, so we could simply perform the conversion in those proxy functions. * Update cargo.lock * Update readme of rtic-time * CI: ESP32: Redact esp_image: Too volatile * Fixup: Changelog double entry rebase mistake --------- Co-authored-by: Henrik Tjäder <henrik@tjaders.com>
310 lines
9.1 KiB
Rust
310 lines
9.1 KiB
Rust
//! A test that verifies the sub-tick correctness of the [`TimerQueue`]'s `delay` functionality.
|
|
//!
|
|
//! To run this test, you need to activate the `critical-section/std` feature.
|
|
|
|
use std::{
|
|
fmt::Debug,
|
|
future::Future,
|
|
pin::Pin,
|
|
sync::{
|
|
atomic::{AtomicBool, AtomicU64, AtomicUsize, Ordering},
|
|
Arc,
|
|
},
|
|
task::Context,
|
|
thread::sleep,
|
|
time::Duration,
|
|
};
|
|
|
|
use cooked_waker::{IntoWaker, WakeRef};
|
|
use fugit::ExtU64Ceil;
|
|
use parking_lot::Mutex;
|
|
use rtic_time::{
|
|
monotonic::TimerQueueBasedMonotonic,
|
|
timer_queue::{TimerQueue, TimerQueueBackend},
|
|
Monotonic,
|
|
};
|
|
|
|
const SUBTICKS_PER_TICK: u32 = 10;
|
|
struct SubtickTestTimer;
|
|
struct SubtickTestTimerBackend;
|
|
static TIMER_QUEUE: TimerQueue<SubtickTestTimerBackend> = TimerQueue::new();
|
|
static NOW_SUBTICKS: AtomicU64 = AtomicU64::new(0);
|
|
static COMPARE_TICKS: Mutex<Option<u64>> = Mutex::new(None);
|
|
|
|
impl SubtickTestTimer {
|
|
pub fn init() {
|
|
SubtickTestTimerBackend::init();
|
|
}
|
|
}
|
|
|
|
impl SubtickTestTimerBackend {
|
|
fn init() {
|
|
Self::timer_queue().initialize(Self)
|
|
}
|
|
|
|
pub fn tick() -> u64 {
|
|
let now = NOW_SUBTICKS.fetch_add(1, Ordering::Relaxed) + 1;
|
|
let ticks = now / u64::from(SUBTICKS_PER_TICK);
|
|
let subticks = now % u64::from(SUBTICKS_PER_TICK);
|
|
|
|
let compare = COMPARE_TICKS.lock();
|
|
|
|
// println!(
|
|
// "ticks: {ticks}, subticks: {subticks}, compare: {:?}",
|
|
// *compare
|
|
// );
|
|
if subticks == 0 && Some(ticks) == *compare {
|
|
unsafe {
|
|
Self::timer_queue().on_monotonic_interrupt();
|
|
}
|
|
}
|
|
|
|
subticks
|
|
}
|
|
|
|
pub fn forward_to_subtick(subtick: u64) {
|
|
assert!(subtick < u64::from(SUBTICKS_PER_TICK));
|
|
while Self::tick() != subtick {}
|
|
}
|
|
|
|
pub fn now_subticks() -> u64 {
|
|
NOW_SUBTICKS.load(Ordering::Relaxed)
|
|
}
|
|
}
|
|
|
|
impl TimerQueueBackend for SubtickTestTimerBackend {
|
|
type Ticks = u64;
|
|
|
|
fn now() -> Self::Ticks {
|
|
NOW_SUBTICKS.load(Ordering::Relaxed) / u64::from(SUBTICKS_PER_TICK)
|
|
}
|
|
|
|
fn set_compare(instant: Self::Ticks) {
|
|
*COMPARE_TICKS.lock() = Some(instant);
|
|
}
|
|
|
|
fn clear_compare_flag() {}
|
|
|
|
fn pend_interrupt() {
|
|
unsafe {
|
|
Self::timer_queue().on_monotonic_interrupt();
|
|
}
|
|
}
|
|
|
|
fn timer_queue() -> &'static TimerQueue<Self> {
|
|
&TIMER_QUEUE
|
|
}
|
|
}
|
|
|
|
impl TimerQueueBasedMonotonic for SubtickTestTimer {
|
|
type Backend = SubtickTestTimerBackend;
|
|
|
|
type Instant = fugit::Instant<u64, SUBTICKS_PER_TICK, 1000>;
|
|
type Duration = fugit::Duration<u64, SUBTICKS_PER_TICK, 1000>;
|
|
}
|
|
|
|
rtic_time::impl_embedded_hal_delay_fugit!(SubtickTestTimer);
|
|
rtic_time::impl_embedded_hal_async_delay_fugit!(SubtickTestTimer);
|
|
|
|
// A simple struct that counts the number of times it is awoken. Can't
|
|
// be awoken by value (because that would discard the counter), so we
|
|
// must instead wrap it in an Arc.
|
|
#[derive(Debug, Default)]
|
|
struct WakeCounter {
|
|
count: AtomicUsize,
|
|
}
|
|
|
|
impl WakeCounter {
|
|
fn get(&self) -> usize {
|
|
self.count.load(Ordering::SeqCst)
|
|
}
|
|
}
|
|
|
|
impl WakeRef for WakeCounter {
|
|
fn wake_by_ref(&self) {
|
|
let _prev = self.count.fetch_add(1, Ordering::SeqCst);
|
|
}
|
|
}
|
|
|
|
struct OnDrop<F: FnOnce()>(Option<F>);
|
|
impl<F: FnOnce()> OnDrop<F> {
|
|
pub fn new(f: F) -> Self {
|
|
Self(Some(f))
|
|
}
|
|
}
|
|
impl<F: FnOnce()> Drop for OnDrop<F> {
|
|
fn drop(&mut self) {
|
|
(self.0.take().unwrap())();
|
|
}
|
|
}
|
|
|
|
macro_rules! subtick_test {
|
|
(@run $start:expr, $actual_duration:expr, $delay_fn:expr) => {{
|
|
// forward clock to $start
|
|
SubtickTestTimerBackend::forward_to_subtick($start);
|
|
|
|
// call wait function
|
|
let delay_fn = $delay_fn;
|
|
let mut future = std::pin::pin!(delay_fn);
|
|
|
|
let wakecounter = Arc::new(WakeCounter::default());
|
|
let waker = Arc::clone(&wakecounter).into_waker();
|
|
let mut context = Context::from_waker(&waker);
|
|
|
|
let mut finished_after: Option<u64> = None;
|
|
for i in 0..10 * u64::from(SUBTICKS_PER_TICK) {
|
|
if Future::poll(Pin::new(&mut future), &mut context).is_ready() {
|
|
if finished_after.is_none() {
|
|
finished_after = Some(i);
|
|
}
|
|
break;
|
|
};
|
|
|
|
assert_eq!(wakecounter.get(), 0);
|
|
SubtickTestTimerBackend::tick();
|
|
}
|
|
|
|
let expected_wakeups = {
|
|
if $actual_duration == 0 {
|
|
0
|
|
} else {
|
|
1
|
|
}
|
|
};
|
|
assert_eq!(wakecounter.get(), expected_wakeups);
|
|
|
|
// Tick again to test that we don't get a second wake
|
|
SubtickTestTimerBackend::tick();
|
|
assert_eq!(wakecounter.get(), expected_wakeups);
|
|
|
|
assert_eq!(
|
|
Some($actual_duration),
|
|
finished_after,
|
|
"Expected to wait {} ticks, but waited {:?} ticks.",
|
|
$actual_duration,
|
|
finished_after,
|
|
);
|
|
}};
|
|
|
|
(@run_blocking $start:expr, $actual_duration:expr, $delay_fn:expr) => {{
|
|
// forward clock to $start
|
|
SubtickTestTimerBackend::forward_to_subtick($start);
|
|
|
|
let t_start = SubtickTestTimerBackend::now_subticks();
|
|
|
|
let finished = AtomicBool::new(false);
|
|
std::thread::scope(|s|{
|
|
s.spawn(||{
|
|
let _finished_guard = OnDrop::new(|| finished.store(true, Ordering::Relaxed));
|
|
($delay_fn)();
|
|
});
|
|
s.spawn(||{
|
|
sleep(Duration::from_millis(10));
|
|
while !finished.load(Ordering::Relaxed) {
|
|
SubtickTestTimerBackend::tick();
|
|
sleep(Duration::from_millis(10));
|
|
}
|
|
});
|
|
});
|
|
|
|
let t_end = SubtickTestTimerBackend::now_subticks();
|
|
let measured_duration = t_end - t_start;
|
|
assert_eq!(
|
|
$actual_duration,
|
|
measured_duration,
|
|
"Expected to wait {} ticks, but waited {:?} ticks.",
|
|
$actual_duration,
|
|
measured_duration,
|
|
);
|
|
}};
|
|
|
|
|
|
|
|
|
|
($start:expr, $min_duration:expr, $actual_duration:expr) => {{
|
|
subtick_test!(@run $start, $actual_duration, async {
|
|
let mut timer = SubtickTestTimer;
|
|
embedded_hal_async::delay::DelayNs::delay_ms(&mut timer, $min_duration).await;
|
|
});
|
|
subtick_test!(@run $start, $actual_duration, async {
|
|
let mut timer = SubtickTestTimer;
|
|
embedded_hal_async::delay::DelayNs::delay_us(&mut timer, 1_000 * $min_duration).await;
|
|
});
|
|
subtick_test!(@run $start, $actual_duration, async {
|
|
let mut timer = SubtickTestTimer;
|
|
embedded_hal_async::delay::DelayNs::delay_ns(&mut timer, 1_000_000 * $min_duration).await;
|
|
});
|
|
subtick_test!(@run $start, $actual_duration, async {
|
|
SubtickTestTimer::delay($min_duration.millis_at_least()).await;
|
|
});
|
|
subtick_test!(@run $start, $actual_duration, async {
|
|
let _ = SubtickTestTimer::timeout_after($min_duration.millis_at_least(), std::future::pending::<()>()).await;
|
|
});
|
|
|
|
// Those are slow and unreliable; enable them when needed.
|
|
const ENABLE_BLOCKING_TESTS: bool = false;
|
|
if ENABLE_BLOCKING_TESTS {
|
|
subtick_test!(@run_blocking $start, $actual_duration, || {
|
|
let mut timer = SubtickTestTimer;
|
|
embedded_hal::delay::DelayNs::delay_ms(&mut timer, $min_duration);
|
|
});
|
|
subtick_test!(@run_blocking $start, $actual_duration, || {
|
|
let mut timer = SubtickTestTimer;
|
|
embedded_hal::delay::DelayNs::delay_us(&mut timer, 1_000 * $min_duration);
|
|
});
|
|
subtick_test!(@run_blocking $start, $actual_duration, || {
|
|
let mut timer = SubtickTestTimer;
|
|
embedded_hal::delay::DelayNs::delay_ns(&mut timer, 1_000_000 * $min_duration);
|
|
});
|
|
}
|
|
}};
|
|
}
|
|
|
|
#[test]
|
|
fn timer_queue_subtick_precision() {
|
|
SubtickTestTimer::init();
|
|
|
|
// subtick_test!(a, b, c) tests the following thing:
|
|
//
|
|
// If we start at subtick a and we need to wait b subticks,
|
|
// then we will actually wait c subticks.
|
|
// The important part is that c is never smaller than b,
|
|
// in all cases, as that would violate the contract of
|
|
// embedded-hal's DelayNs.
|
|
|
|
subtick_test!(0, 0, 0);
|
|
subtick_test!(0, 1, 20);
|
|
subtick_test!(0, 10, 20);
|
|
subtick_test!(0, 11, 30);
|
|
subtick_test!(0, 12, 30);
|
|
|
|
subtick_test!(1, 0, 0);
|
|
subtick_test!(1, 1, 19);
|
|
subtick_test!(1, 10, 19);
|
|
subtick_test!(1, 11, 29);
|
|
subtick_test!(1, 12, 29);
|
|
|
|
subtick_test!(2, 0, 0);
|
|
subtick_test!(2, 1, 18);
|
|
subtick_test!(2, 10, 18);
|
|
subtick_test!(2, 11, 28);
|
|
subtick_test!(2, 12, 28);
|
|
|
|
subtick_test!(3, 0, 0);
|
|
subtick_test!(3, 1, 17);
|
|
subtick_test!(3, 10, 17);
|
|
subtick_test!(3, 11, 27);
|
|
subtick_test!(3, 12, 27);
|
|
|
|
subtick_test!(8, 0, 0);
|
|
subtick_test!(8, 1, 12);
|
|
subtick_test!(8, 10, 12);
|
|
subtick_test!(8, 11, 22);
|
|
subtick_test!(8, 12, 22);
|
|
|
|
subtick_test!(9, 0, 0);
|
|
subtick_test!(9, 1, 11);
|
|
subtick_test!(9, 10, 11);
|
|
subtick_test!(9, 11, 21);
|
|
subtick_test!(9, 12, 21);
|
|
}
|