use std::{fmt::Debug, time::Duration}; use parking_lot::Mutex; use rtic_time::{Monotonic, TimerQueue}; use tokio::sync::watch; static START: Mutex> = Mutex::new(None); pub struct StdTokioMono; // An instant that "starts" at Duration::ZERO, so we can // have a zero value. #[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Debug)] pub struct Instant(std::time::Duration); impl Instant { pub fn init() { assert!(START.lock().is_none()); let _ = START.lock().insert(std::time::Instant::now()); } pub fn now() -> Self { let start = channel_read("Instant start not initialized", &START); Self(start.elapsed()) } } impl core::ops::Add for Instant { type Output = Instant; fn add(self, rhs: Duration) -> Self::Output { Self(self.0 + rhs) } } impl core::ops::Sub for Instant { type Output = Instant; fn sub(self, rhs: Duration) -> Self::Output { Self(self.0 - rhs) } } impl core::ops::Sub for Instant { type Output = Duration; fn sub(self, rhs: Instant) -> Self::Output { self.0 - rhs.0 } } fn channel_read(msg: &str, channel: &Mutex>) -> T { channel.lock().as_ref().expect(msg).clone() } fn event_write(msg: &str, channel: &Mutex>>, value: T) { channel.lock().as_ref().expect(msg).send(value).unwrap() } static COMPARE_RX: Mutex>> = Mutex::new(None); static COMPARE_TX: Mutex>> = Mutex::new(None); static INTERRUPT_RX: Mutex>> = Mutex::new(None); static INTERRUPT_TX: Mutex>> = Mutex::new(None); impl StdTokioMono { /// Initialize the monotonic. /// /// Returns a [`watch::Sender`] that will cause the interrupt /// & compare-change tasks to exit if a value is sent to it or it /// is dropped. #[must_use = "Dropping the returned Sender stops interrupts & compare-change events"] pub fn init() -> watch::Sender<()> { Instant::init(); let (compare_tx, compare_rx) = watch::channel(Instant(Duration::ZERO)); let (irq_tx, irq_rx) = watch::channel(()); assert!(COMPARE_RX.lock().is_none()); assert!(COMPARE_TX.lock().is_none()); let _ = COMPARE_RX.lock().insert(compare_rx); let _ = COMPARE_TX.lock().insert(compare_tx); assert!(INTERRUPT_RX.lock().is_none()); assert!(INTERRUPT_TX.lock().is_none()); let _ = INTERRUPT_RX.lock().insert(irq_rx); let _ = INTERRUPT_TX.lock().insert(irq_tx); Self::queue().initialize(Self); let (killer_tx, mut killer_rx) = watch::channel(()); let mut killer_clone = killer_rx.clone(); // Set up a task that watches for changes to the COMPARE value, // and re-starts a timeout based on that change tokio::spawn(async move { let mut compare_rx = channel_read("Compare RX not initialized", &COMPARE_RX); loop { let compare = compare_rx.borrow().clone(); let end = channel_read("Start not initialized", &START) + compare.0; tokio::select! { _ = killer_clone.changed() => break, _ = compare_rx.changed() => {}, _ = tokio::time::sleep_until(end.into()) => { event_write("Interrupt TX not initialized", &INTERRUPT_TX, ()); // Sleep for a bit to avoid re-firing the interrupt a bunch of // times. tokio::time::sleep(Duration::from_millis(1)).await; }, } } }); // Set up a task that emulates an interrupt handler, calling `on_monotonic_interrupt` // whenever an "interrupt" is generated. tokio::spawn(async move { let mut interrupt_rx = channel_read("Interrupt RX not initialized.", &INTERRUPT_RX); loop { tokio::select! { _ = killer_rx.changed() => break, _ = interrupt_rx.changed() => { // TODO: verify that we get interrupts triggered by an // explicit pend or due to COMPARE at the correct time. } } unsafe { StdTokioMono::queue().on_monotonic_interrupt(); } } }); killer_tx } /// Used to access the underlying timer queue pub fn queue() -> &'static TimerQueue { &TIMER_QUEUE } } impl Monotonic for StdTokioMono { const ZERO: Self::Instant = Instant(Duration::ZERO); type Instant = Instant; type Duration = Duration; fn now() -> Self::Instant { Instant::now() } fn set_compare(instant: Self::Instant) { // TODO: verify that we receive the correct amount & values // for `set_compare`. log::info!("Setting compare to {} ms", instant.0.as_millis()); event_write("Compare TX not initialized", &COMPARE_TX, instant); } fn clear_compare_flag() {} fn pend_interrupt() { event_write("Interrupt TX not initialized", &INTERRUPT_TX, ()); } } static TIMER_QUEUE: TimerQueue = TimerQueue::new(); #[tokio::test] async fn main() { pretty_env_logger::init(); let _interrupt_killer = StdTokioMono::init(); let start = std::time::Instant::now(); let build_delay_test = |threshold: u128, pre_delay: Option, delay: u64| { let delay = Duration::from_millis(delay); let pre_delay = pre_delay.map(Duration::from_millis); let total = if let Some(pre_delay) = pre_delay { pre_delay + delay } else { delay }; let total_millis = total.as_millis(); async move { if let Some(pre_delay) = pre_delay { tokio::time::sleep_until((start + pre_delay).into()).await; } StdTokioMono::queue().delay(delay).await; let elapsed = start.elapsed().as_millis(); log::info!("{total_millis} ms delay reached (after {elapsed} ms)"); if elapsed > total_millis.saturating_add(threshold) || elapsed < total_millis.saturating_sub(threshold) { panic!("{total_millis} ms delay was not on time ({elapsed} ms passed instead)"); } } }; // TODO: depending on the precision of the delays that can be used, this threshold // may have to be altered a bit. const TIME_THRESHOLD_MS: u128 = 5; let sec1 = build_delay_test(TIME_THRESHOLD_MS, Some(100), 100); let sec2 = build_delay_test(TIME_THRESHOLD_MS, None, 300); let sec3 = build_delay_test(TIME_THRESHOLD_MS, None, 400); tokio::join!(sec2, sec1, sec3); }