rtic_monotonics/nrf/
rtc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
//! [`Monotonic`](rtic_time::Monotonic) implementation for the nRF Real Time Clocks (RTC).
//!
//! # Example
//!
//! ```
//! use rtic_monotonics::nrf::rtc::prelude::*;
//! nrf_rtc0_monotonic!(Mono);
//!
//! fn init() {
//!     # // This is normally provided by the selected PAC
//!     # let rtc = unsafe { core::mem::transmute(()) };
//!     // Start the monotonic
//!     Mono::start(rtc);
//! }
//!
//! async fn usage() {
//!     loop {
//!          // Use the monotonic
//!          let timestamp = Mono::now();
//!          Mono::delay(100.millis()).await;
//!     }
//! }
//! ```

/// Common definitions and traits for using the nRF RTC monotonics
pub mod prelude {
    pub use crate::nrf_rtc0_monotonic;
    pub use crate::nrf_rtc1_monotonic;
    #[cfg(any(feature = "nrf52832", feature = "nrf52833", feature = "nrf52840"))]
    pub use crate::nrf_rtc2_monotonic;

    pub use crate::Monotonic;
    pub use fugit::{self, ExtU64, ExtU64Ceil};
}

#[cfg(feature = "nrf52805")]
#[doc(hidden)]
pub use nrf52805_pac::{self as pac, RTC0, RTC1};
#[cfg(feature = "nrf52810")]
#[doc(hidden)]
pub use nrf52810_pac::{self as pac, RTC0, RTC1};
#[cfg(feature = "nrf52811")]
#[doc(hidden)]
pub use nrf52811_pac::{self as pac, RTC0, RTC1};
#[cfg(feature = "nrf52832")]
#[doc(hidden)]
pub use nrf52832_pac::{self as pac, RTC0, RTC1, RTC2};
#[cfg(feature = "nrf52833")]
#[doc(hidden)]
pub use nrf52833_pac::{self as pac, RTC0, RTC1, RTC2};
#[cfg(feature = "nrf52840")]
#[doc(hidden)]
pub use nrf52840_pac::{self as pac, RTC0, RTC1, RTC2};
#[cfg(feature = "nrf5340-app")]
#[doc(hidden)]
pub use nrf5340_app_pac::{self as pac, RTC0_NS as RTC0, RTC1_NS as RTC1};
#[cfg(feature = "nrf5340-net")]
#[doc(hidden)]
pub use nrf5340_net_pac::{self as pac, RTC0_NS as RTC0, RTC1_NS as RTC1};
#[cfg(feature = "nrf9160")]
#[doc(hidden)]
pub use nrf9160_pac::{self as pac, RTC0_NS as RTC0, RTC1_NS as RTC1};

use portable_atomic::{AtomicU32, Ordering};
use rtic_time::{
    half_period_counter::calculate_now,
    timer_queue::{TimerQueue, TimerQueueBackend},
};

#[doc(hidden)]
#[macro_export]
macro_rules! __internal_create_nrf_rtc_interrupt {
    ($mono_backend:ident, $rtc:ident) => {
        #[no_mangle]
        #[allow(non_snake_case)]
        unsafe extern "C" fn $rtc() {
            use $crate::TimerQueueBackend;
            $crate::nrf::rtc::$mono_backend::timer_queue().on_monotonic_interrupt();
        }
    };
}

#[doc(hidden)]
#[macro_export]
macro_rules! __internal_create_nrf_rtc_struct {
    ($name:ident, $mono_backend:ident, $timer:ident) => {
        /// A `Monotonic` based on the nRF RTC peripheral.
        pub struct $name;

        impl $name {
            /// Starts the `Monotonic`.
            ///
            /// This method must be called only once.
            pub fn start(rtc: $crate::nrf::rtc::$timer) {
                $crate::__internal_create_nrf_rtc_interrupt!($mono_backend, $timer);

                $crate::nrf::rtc::$mono_backend::_start(rtc);
            }
        }

        impl $crate::TimerQueueBasedMonotonic for $name {
            type Backend = $crate::nrf::rtc::$mono_backend;
            type Instant = $crate::fugit::Instant<
                <Self::Backend as $crate::TimerQueueBackend>::Ticks,
                1,
                32_768,
            >;
            type Duration = $crate::fugit::Duration<
                <Self::Backend as $crate::TimerQueueBackend>::Ticks,
                1,
                32_768,
            >;
        }

        $crate::rtic_time::impl_embedded_hal_delay_fugit!($name);
        $crate::rtic_time::impl_embedded_hal_async_delay_fugit!($name);
    };
}

/// Create an RTC0 based monotonic and register the RTC0 interrupt for it.
///
/// See [`crate::nrf::rtc`] for more details.
#[macro_export]
macro_rules! nrf_rtc0_monotonic {
    ($name:ident) => {
        $crate::__internal_create_nrf_rtc_struct!($name, Rtc0Backend, RTC0);
    };
}

/// Create an RTC1 based monotonic and register the RTC1 interrupt for it.
///
/// See [`crate::nrf::rtc`] for more details.
#[macro_export]
macro_rules! nrf_rtc1_monotonic {
    ($name:ident) => {
        $crate::__internal_create_nrf_rtc_struct!($name, Rtc1Backend, RTC1);
    };
}

/// Create an RTC2 based monotonic and register the RTC2 interrupt for it.
///
/// See [`crate::nrf::rtc`] for more details.
#[cfg(any(feature = "nrf52832", feature = "nrf52833", feature = "nrf52840"))]
#[cfg_attr(
    docsrs,
    doc(cfg(any(feature = "nrf52832", feature = "nrf52833", feature = "nrf52840")))
)]
#[macro_export]
macro_rules! nrf_rtc2_monotonic {
    ($name:ident) => {
        $crate::__internal_create_nrf_rtc_struct!($name, Rtc2Backend, RTC2);
    };
}

struct TimerValueU24(u32);
impl rtic_time::half_period_counter::TimerValue for TimerValueU24 {
    const BITS: u32 = 24;
}
impl From<TimerValueU24> for u64 {
    fn from(value: TimerValueU24) -> Self {
        Self::from(value.0)
    }
}

macro_rules! make_rtc {
    ($backend_name:ident, $rtc:ident, $overflow:ident, $tq:ident$(, doc: ($($doc:tt)*))?) => {
        /// RTC based [`TimerQueueBackend`].
        $(
            #[cfg_attr(docsrs, doc(cfg($($doc)*)))]
        )?
        pub struct $backend_name;

        static $overflow: AtomicU32 = AtomicU32::new(0);
        static $tq: TimerQueue<$backend_name> = TimerQueue::new();

        impl $backend_name {
            /// Starts the timer.
            ///
            /// **Do not use this function directly.**
            ///
            /// Use the prelude macros instead.
            pub fn _start(rtc: $rtc) {
                unsafe { rtc.prescaler.write(|w| w.bits(0)) };

                // Disable interrupts, as preparation
                rtc.intenclr.write(|w| w
                    .compare0().clear()
                    .compare1().clear()
                    .ovrflw().clear()
                );

                // Configure compare registers
                rtc.cc[0].write(|w| unsafe { w.bits(0) }); // Dynamic wakeup
                rtc.cc[1].write(|w| unsafe { w.bits(0x80_0000) }); // Half-period

                // Timing critical, make sure we don't get interrupted
                critical_section::with(|_|{
                    // Reset the timer
                    rtc.tasks_clear.write(|w| unsafe { w.bits(1) });
                    rtc.tasks_start.write(|w| unsafe { w.bits(1) });

                    // Clear pending events.
                    // Should be close enough to the timer reset that we don't miss any events.
                    rtc.events_ovrflw.write(|w| w);
                    rtc.events_compare[0].write(|w| w);
                    rtc.events_compare[1].write(|w| w);

                    // Make sure overflow counter is synced with the timer value
                    $overflow.store(0, Ordering::SeqCst);

                    // Initialized the timer queue
                    $tq.initialize(Self {});

                    // Enable interrupts.
                    // Should be close enough to the timer reset that we don't miss any events.
                    rtc.intenset.write(|w| w
                        .compare0().set()
                        .compare1().set()
                        .ovrflw().set()
                    );
                    rtc.evtenset.write(|w| w
                        .compare0().set()
                        .compare1().set()
                        .ovrflw().set()
                    );
                });

                // SAFETY: We take full ownership of the peripheral and interrupt vector,
                // plus we are not using any external shared resources so we won't impact
                // basepri/source masking based critical sections.
                unsafe {
                    crate::set_monotonic_prio(pac::NVIC_PRIO_BITS, pac::Interrupt::$rtc);
                    pac::NVIC::unmask(pac::Interrupt::$rtc);
                }
            }
        }

        impl TimerQueueBackend for $backend_name {
            type Ticks = u64;

            fn now() -> Self::Ticks {
                let rtc = unsafe { &*$rtc::PTR };
                calculate_now(
                    || $overflow.load(Ordering::Relaxed),
                    || TimerValueU24(rtc.counter.read().bits())
                )
            }

            fn on_interrupt() {
                let rtc = unsafe { &*$rtc::PTR };
                if rtc.events_ovrflw.read().bits() == 1 {
                    rtc.events_ovrflw.write(|w| unsafe { w.bits(0) });
                    let prev = $overflow.fetch_add(1, Ordering::Relaxed);
                    assert!(prev % 2 == 1, "Monotonic must have skipped an interrupt!");
                }
                if rtc.events_compare[1].read().bits() == 1 {
                    rtc.events_compare[1].write(|w| unsafe { w.bits(0) });
                    let prev = $overflow.fetch_add(1, Ordering::Relaxed);
                    assert!(prev % 2 == 0, "Monotonic must have skipped an interrupt!");
                }
            }

            fn set_compare(mut instant: Self::Ticks) {
                let rtc = unsafe { &*$rtc::PTR };

                const MAX: u64 = 0xff_ffff;

                // Disable interrupts because this section is timing critical.
                // We rely on the fact that this entire section runs within one
                // RTC clock tick. (which it will do easily if it doesn't get
                // interrupted)
                critical_section::with(|_|{
                    let now = Self::now();
                    // wrapping_sub deals with the u64 overflow corner case
                    let diff = instant.wrapping_sub(now);
                    let val = if diff <= MAX {
                        // Now we know `instant` whill happen within one `MAX` time duration.

                        // Errata: Timer interrupts don't fire if they are scheduled less than
                        // two ticks in the future. Make it three, because the timer could
                        // tick right now.
                        if diff < 3 {
                            instant = now.wrapping_add(3);
                        }

                        (instant & MAX) as u32
                    } else {
                        0
                    };

                    unsafe { rtc.cc[0].write(|w| w.bits(val)) };
                });
            }

            fn clear_compare_flag() {
                let rtc = unsafe { &*$rtc::PTR };
                unsafe { rtc.events_compare[0].write(|w| w.bits(0)) };
            }

            fn pend_interrupt() {
                pac::NVIC::pend(pac::Interrupt::$rtc);
            }

            fn timer_queue() -> &'static TimerQueue<Self> {
                &$tq
            }
        }
    };
}

make_rtc!(Rtc0Backend, RTC0, RTC0_OVERFLOWS, RTC0_TQ);
make_rtc!(Rtc1Backend, RTC1, RTC1_OVERFLOWS, RTC1_TQ);
#[cfg(any(feature = "nrf52832", feature = "nrf52833", feature = "nrf52840"))]
make_rtc!(Rtc2Backend, RTC2, RTC2_OVERFLOWS, RTC2_TQ, doc: (any(feature = "nrf52832", feature = "nrf52833", feature = "nrf52840")));