rtic_monotonics/
imxrt.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
//! [`Monotonic`](rtic_time::Monotonic) implementations for i.MX RT's GPT peripherals.
//!
//! # Example
//!
//! ```
//! use rtic_monotonics::imxrt::prelude::*;
//! imxrt_gpt1_monotonic!(Mono, 1_000_000);
//!
//! fn init() {
//!     // Obtain ownership of the timer register block.
//!     let gpt1 = unsafe { imxrt_ral::gpt::GPT1::instance() };
//!
//!     // Configure the timer tick rate as specified earlier
//!     todo!("Configure the gpt1 peripheral to a tick rate of 1_000_000");
//!
//!     // Start the monotonic
//!     Mono::start(gpt1);
//! }
//!
//! async fn usage() {
//!     loop {
//!          // Use the monotonic
//!          let timestamp = Mono::now();
//!          Mono::delay(100.millis()).await;
//!     }
//! }
//! ```

use portable_atomic::{AtomicU32, Ordering};
use rtic_time::{
    half_period_counter::calculate_now,
    timer_queue::{TimerQueue, TimerQueueBackend},
};

pub use imxrt_ral as ral;

/// Common definitions and traits for using the i.MX RT monotonics
pub mod prelude {
    #[cfg(feature = "imxrt_gpt1")]
    pub use crate::imxrt_gpt1_monotonic;
    #[cfg(feature = "imxrt_gpt2")]
    pub use crate::imxrt_gpt2_monotonic;

    pub use crate::Monotonic;
    pub use fugit::{self, ExtU64, ExtU64Ceil};
}

#[doc(hidden)]
#[macro_export]
macro_rules! __internal_create_imxrt_timer_interrupt {
    ($mono_backend:ident, $timer:ident) => {
        #[no_mangle]
        #[allow(non_snake_case)]
        unsafe extern "C" fn $timer() {
            use $crate::TimerQueueBackend;
            $crate::imxrt::$mono_backend::timer_queue().on_monotonic_interrupt();
        }
    };
}

#[doc(hidden)]
#[macro_export]
macro_rules! __internal_create_imxrt_timer_struct {
    ($name:ident, $mono_backend:ident, $timer:ident, $tick_rate_hz:expr) => {
        /// A `Monotonic` based on the GPT peripheral.
        pub struct $name;

        impl $name {
            /// Starts the `Monotonic`.
            ///
            /// This method must be called only once.
            pub fn start(gpt: $crate::imxrt::ral::gpt::$timer) {
                $crate::__internal_create_imxrt_timer_interrupt!($mono_backend, $timer);

                $crate::imxrt::$mono_backend::_start(gpt);
            }
        }

        impl $crate::TimerQueueBasedMonotonic for $name {
            type Backend = $crate::imxrt::$mono_backend;
            type Instant = $crate::fugit::Instant<
                <Self::Backend as $crate::TimerQueueBackend>::Ticks,
                1,
                { $tick_rate_hz },
            >;
            type Duration = $crate::fugit::Duration<
                <Self::Backend as $crate::TimerQueueBackend>::Ticks,
                1,
                { $tick_rate_hz },
            >;
        }

        $crate::rtic_time::impl_embedded_hal_delay_fugit!($name);
        $crate::rtic_time::impl_embedded_hal_async_delay_fugit!($name);
    };
}

/// Create a GPT1 based monotonic and register the GPT1 interrupt for it.
///
/// See [`crate::imxrt`] for more details.
///
/// # Arguments
///
/// * `name` - The name that the monotonic type will have.
/// * `tick_rate_hz` - The tick rate of the timer peripheral. It's the user's responsibility
///                    to configure the peripheral to the given frequency before starting the
///                    monotonic.
#[cfg(feature = "imxrt_gpt1")]
#[macro_export]
macro_rules! imxrt_gpt1_monotonic {
    ($name:ident, $tick_rate_hz:expr) => {
        $crate::__internal_create_imxrt_timer_struct!($name, Gpt1Backend, GPT1, $tick_rate_hz);
    };
}

/// Create a GPT2 based monotonic and register the GPT2 interrupt for it.
///
/// See [`crate::imxrt`] for more details.
///
/// # Arguments
///
/// * `name` - The name that the monotonic type will have.
/// * `tick_rate_hz` - The tick rate of the timer peripheral. It's the user's responsibility
///                    to configure the peripheral to the given frequency before starting the
///                    monotonic.
#[cfg(feature = "imxrt_gpt2")]
#[macro_export]
macro_rules! imxrt_gpt2_monotonic {
    ($name:ident, $tick_rate_hz:expr) => {
        $crate::__internal_create_imxrt_timer_struct!($name, Gpt2Backend, GPT2, $tick_rate_hz);
    };
}

macro_rules! make_timer {
    ($mono_name:ident, $backend_name:ident, $timer:ident, $period:ident, $tq:ident$(, doc: ($($doc:tt)*))?) => {
        /// GPT based [`TimerQueueBackend`].
        $(
            #[cfg_attr(docsrs, doc(cfg($($doc)*)))]
        )?

        pub struct $backend_name;

        use ral::gpt::$timer;

        /// Number of 2^31 periods elapsed since boot.
        static $period: AtomicU32 = AtomicU32::new(0);
        static $tq: TimerQueue<$backend_name> = TimerQueue::new();

        impl $backend_name {
            /// Starts the timer.
            ///
            /// **Do not use this function directly.**
            ///
            /// Use the prelude macros instead.
            pub fn _start(gpt: $timer) {

                // Disable the timer.
                ral::modify_reg!(ral::gpt, gpt, CR, EN: 0);
                // Clear all status registers.
                ral::write_reg!(ral::gpt, gpt, SR, 0b11_1111);

                // Base configuration
                ral::modify_reg!(ral::gpt, gpt, CR,
                    ENMOD: 1,   // Clear timer state
                    FRR: 1,     // Free-Run mode
                );

                // Reset period
                $period.store(0, Ordering::SeqCst);

                // Enable interrupts
                ral::write_reg!(ral::gpt, gpt, IR,
                    ROVIE: 1,   // Rollover interrupt
                    OF1IE: 1,   // Timer compare 1 interrupt (for half-periods)
                    OF2IE: 1,   // Timer compare 2 interrupt (for dynamic wakeup)
                );

                // Configure half-period interrupt
                ral::write_reg!(ral::gpt, gpt, OCR[0], 0x8000_0000);

                // Dynamic interrupt register; for now initialize to zero
                // so it gets combined with rollover interrupt
                ral::write_reg!(ral::gpt, gpt, OCR[1], 0x0000_0000);

                // Initialize timer queue
                $tq.initialize(Self {});

                // Enable the timer
                ral::modify_reg!(ral::gpt, gpt, CR, EN: 1);
                ral::modify_reg!(ral::gpt, gpt, CR,
                    ENMOD: 0,   // Keep state when disabled
                );

                // SAFETY: We take full ownership of the peripheral and interrupt vector,
                // plus we are not using any external shared resources so we won't impact
                // basepri/source masking based critical sections.
                unsafe {
                    crate::set_monotonic_prio(ral::NVIC_PRIO_BITS, ral::Interrupt::$timer);
                    cortex_m::peripheral::NVIC::unmask(ral::Interrupt::$timer);
                }
            }
        }

        impl TimerQueueBackend for $backend_name {
            type Ticks = u64;

            fn now() -> Self::Ticks {
                let gpt = unsafe{ $timer::instance() };

                calculate_now(
                    || $period.load(Ordering::Relaxed),
                    || ral::read_reg!(ral::gpt, gpt, CNT)
                )
            }

            fn set_compare(instant: Self::Ticks) {
                let gpt = unsafe{ $timer::instance() };

                // Set the timer regardless of whether it is multiple periods in the future,
                // or even already in the past.
                // The worst thing that can happen is a spurious wakeup, and with a timer
                // period of half an hour, this is hardly a problem.

                let ticks_wrapped = instant as u32;

                ral::write_reg!(ral::gpt, gpt, OCR[1], ticks_wrapped);
            }

            fn clear_compare_flag() {
                let gpt = unsafe{ $timer::instance() };
                ral::write_reg!(ral::gpt, gpt, SR, OF2: 1);
            }

            fn pend_interrupt() {
                cortex_m::peripheral::NVIC::pend(ral::Interrupt::$timer);
            }

            fn on_interrupt() {
                let gpt = unsafe{ $timer::instance() };

                let (rollover, half_rollover) = ral::read_reg!(ral::gpt, gpt, SR, ROV, OF1);

                if rollover != 0 {
                    let prev = $period.fetch_add(1, Ordering::Relaxed);
                    ral::write_reg!(ral::gpt, gpt, SR, ROV: 1);
                    assert!(prev % 2 == 1, "Monotonic must have skipped an interrupt!");
                }

                if half_rollover != 0 {
                    let prev = $period.fetch_add(1, Ordering::Relaxed);
                    ral::write_reg!(ral::gpt, gpt, SR, OF1: 1);
                    assert!(prev % 2 == 0, "Monotonic must have skipped an interrupt!");
                }
            }

            fn timer_queue() -> &'static TimerQueue<Self> {
                &$tq
            }
        }
    };
}

#[cfg(feature = "imxrt_gpt1")]
make_timer!(Gpt1, Gpt1Backend, GPT1, GPT1_HALFPERIODS, GPT1_TQ);

#[cfg(feature = "imxrt_gpt2")]
make_timer!(Gpt2, Gpt2Backend, GPT2, GPT2_HALFPERIODS, GPT2_TQ);