ral_registers/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
// Copyright 2018 Adam Greig
// See LICENSE-APACHE and LICENSE-MIT for license details.
//! This crate contains an MMIO abstraction that uses macros to read,
//! modify, and write fields in registers.
//!
//! See the [README](https://github.com/adamgreig/ral-registers/blob/master/README.md)
//! for further details.
#![no_std]
use core::cell::UnsafeCell;
/// A read-write register of type T.
///
/// Contains one value of type T and provides volatile read/write functions to it.
///
/// # Safety
/// This register should be used where reads and writes to this peripheral register do not
/// lead to memory unsafety. For example, it is a poor choice for a DMA target, but less
/// worrisome for a GPIO output data register.
///
/// Access to this register must be synchronised; if multiple threads (or the main thread and an
/// interrupt service routine) are accessing it simultaneously you may encounter data races.
#[repr(transparent)]
pub struct RWRegister<T> {
register: UnsafeCell<T>,
}
impl<T: Copy> RWRegister<T> {
/// Reads the value of the register.
#[inline(always)]
pub fn read(&self) -> T {
unsafe { ::core::ptr::read_volatile(self.register.get()) }
}
/// Writes a new value to the register.
#[inline(always)]
pub fn write(&self, val: T) {
unsafe { ::core::ptr::write_volatile(self.register.get(), val) }
}
}
/// A read-write register of type T, where read/write access is unsafe.
///
/// Contains one value of type T and provides volatile read/write functions to it.
///
/// # Safety
/// This register should be used where reads and writes to this peripheral may invoke
/// undefined behaviour or memory unsafety. For example, any registers you write a memory
/// address into.
///
/// Access to this register must be synchronised; if multiple threads (or the main thread and an
/// interrupt service routine) are accessing it simultaneously you may encounter data races.
#[repr(transparent)]
pub struct UnsafeRWRegister<T> {
register: UnsafeCell<T>,
}
impl<T: Copy> UnsafeRWRegister<T> {
/// Reads the value of the register.
///
/// # Safety
/// Refer to [UnsafeRWRegister]'s Safety section.
#[inline(always)]
pub unsafe fn read(&self) -> T {
::core::ptr::read_volatile(self.register.get())
}
/// Writes a new value to the register.
///
/// # Safety
/// Refer to [UnsafeRWRegister]'s Safety section.
#[inline(always)]
pub unsafe fn write(&self, val: T) {
::core::ptr::write_volatile(self.register.get(), val)
}
}
/// A read-only register of type T.
///
/// Contains one value of type T and provides a volatile read function to it.
///
/// # Safety
/// This register should be used where reads and writes to this peripheral register do not
/// lead to memory unsafety.
///
/// Access to this register must be synchronised; if multiple threads (or the main thread and an
/// interrupt service routine) are accessing it simultaneously you may encounter data races.
#[repr(transparent)]
pub struct RORegister<T> {
register: UnsafeCell<T>,
}
impl<T: Copy> RORegister<T> {
/// Reads the value of the register.
#[inline(always)]
pub fn read(&self) -> T {
unsafe { ::core::ptr::read_volatile(self.register.get()) }
}
}
/// A read-only register of type T, where read access is unsafe.
///
/// Contains one value of type T and provides a volatile read function to it.
///
/// # Safety
/// This register should be used where reads to this peripheral may invoke
/// undefined behaviour or memory unsafety.
///
/// Access to this register must be synchronised; if multiple threads (or the main thread and an
/// interrupt service routine) are accessing it simultaneously you may encounter data races.
#[repr(transparent)]
pub struct UnsafeRORegister<T> {
register: UnsafeCell<T>,
}
impl<T: Copy> UnsafeRORegister<T> {
/// Reads the value of the register.
///
/// # Safety
/// Refer to [UnsafeRWRegister]'s Safety section.
#[inline(always)]
pub unsafe fn read(&self) -> T {
::core::ptr::read_volatile(self.register.get())
}
}
/// A write-only register of type T.
///
/// Contains one value of type T and provides a volatile write function to it.
///
/// # Safety
/// This register should be used where writes to this peripheral register do not lead to memory
/// unsafety.
///
/// Access to this register must be synchronised; if multiple threads (or the main thread and an
/// interrupt service routine) are accessing it simultaneously you may encounter data races.
#[repr(transparent)]
pub struct WORegister<T> {
register: UnsafeCell<T>,
}
impl<T: Copy> WORegister<T> {
/// Writes a new value to the register.
#[inline(always)]
pub fn write(&self, val: T) {
unsafe { ::core::ptr::write_volatile(self.register.get(), val) }
}
}
/// A write-only register of type T, where write access is unsafe.
///
/// Contains one value of type T and provides a volatile write function to it.
///
/// # Safety
/// This register should be used where reads and writes to this peripheral may invoke
/// undefined behaviour or memory unsafety.
///
/// Access to this register must be synchronised; if multiple threads (or the main thread and an
/// interrupt service routine) are accessing it simultaneously you may encounter data races.
#[repr(transparent)]
pub struct UnsafeWORegister<T> {
register: UnsafeCell<T>,
}
impl<T: Copy> UnsafeWORegister<T> {
/// Writes a new value to the register.
///
/// # Safety
/// Refer to [UnsafeRWRegister]'s Safety section.
#[inline(always)]
pub unsafe fn write(&self, val: T) {
::core::ptr::write_volatile(self.register.get(), val)
}
}
/// Write to a RWRegister or UnsafeRWRegister.
///
/// # Examples
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// // Safely acquire the peripheral instance (will panic if already acquired)
/// let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
///
/// // Write some value to the register.
/// write_reg!(stm32ral::gpio, gpioa, ODR, 1<<3);
///
/// // Write values to specific fields. Unspecified fields are written to 0.
/// write_reg!(stm32ral::gpio, gpioa, MODER, MODER3: Output, MODER4: Analog);
///
/// // Unsafe access without requiring you to first `take()` the instance
/// unsafe { write_reg!(stm32ral::gpio, GPIOA, MODER, MODER3: Output, MODER4: Analog) };
/// # }
/// ```
///
/// To support register arrays, each macro form also supports one or more array indices after the
/// register. For example, `write_reg!(stm32ral::gpio, gpioa, ODR[2], 42);` writes the value 42 to
/// the third register in an `ODR` register array.
///
/// # Usage
/// Like `modify_reg!`, this macro can be used in two ways, either with a single value to write to
/// the whole register, or with multiple fields each with their own value.
///
/// In both cases, the first arguments are:
/// * the path to the peripheral module: `stm32ral::gpio`,
/// * a reference to the instance of that peripheral: 'gpioa' (anything which dereferences to
/// `RegisterBlock`, such as `Instance`, `&Instance`, `&RegisterBlock`, or
/// `*const RegisterBlock`),
/// * the register (and offset, for arrays) you wish you access: `MODER` (a field on the
/// `RegisterBlock`).
///
/// In the single-value usage, the final argument is just the value to write:
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
/// // Turn on PA3 (and turn everything else off).
/// write_reg!(stm32ral::gpio, gpioa, ODR, 1<<3);
/// # }
/// ```
///
/// Otherwise, the remaining arguments are each `Field: Value` pairs:
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// // Set PA3 to Output, PA4 to Analog, and everything else to 0 (which is Input).
/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
/// write_reg!(stm32ral::gpio, gpioa, MODER, MODER3: 0b01, MODER4: 0b11);
/// # }
/// ```
/// For fields with annotated values, you can also specify a named value:
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// // As above, but with named values.
/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
/// write_reg!(stm32ral::gpio, gpioa, MODER, MODER3: Output, MODER4: Analog);
/// # }
/// ```
///
/// This macro expands to calling `(*$instance).$register.write(value)`,
/// where in the second usage, the value is computed as the bitwise OR of
/// each field value, which are masked and shifted appropriately for the given field.
/// The named values are brought into scope by `use $peripheral::$register::$field::*` for
/// each field. The same constants could just be specified manually:
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// // As above, but being explicit about named values.
/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
/// write_reg!(stm32ral::gpio, gpioa, MODER, MODER3: stm32ral::gpio::MODER::MODER3::RW::Output,
/// MODER4: stm32ral::gpio::MODER::MODER4::RW::Analog);
/// # }
/// ```
///
/// The fully expanded form is equivalent to:
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// // As above, but expanded.
/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
/// (*gpioa).MODER.write(
/// ((stm32ral::gpio::MODER::MODER3::RW::Output << stm32ral::gpio::MODER::MODER3::offset)
/// & stm32ral::gpio::MODER::MODER3::mask)
/// |
/// ((stm32ral::gpio::MODER::MODER4::RW::Analog << stm32ral::gpio::MODER::MODER4::offset)
/// & stm32ral::gpio::MODER::MODER4::mask)
/// );
/// # }
/// ```
///
/// # Safety
/// This macro will require an unsafe function or block when used with an UnsafeRWRegister,
/// but not if used with RWRegister.
///
/// When run in an unsafe context, peripheral instances are directly accessible without requiring
/// having called `take()` beforehand:
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// unsafe { write_reg!(stm32ral::gpio, GPIOA, MODER, MODER3: Output, MODER4: Analog) };
/// # }
/// ```
/// This works because `GPIOA` is a `*const RegisterBlock` in the `stm32ral::gpio` module;
/// and the macro brings such constants into scope and then dereferences the provided reference.
#[macro_export]
macro_rules! write_reg {
( $periph:path, $instance:expr, $reg:ident $([$offset:expr])*, $( $field:ident : $value:expr ),+ $(,)? ) => {{
#[allow(unused_imports)]
use $periph::{*};
#[allow(unused_imports)]
(*$instance).$reg $([$offset])*.write(
$({
use $periph::{$reg::$field::{W::*, RW::*}};
($value << { use $periph::{$reg::$field::offset}; offset })
& { use $periph::{$reg::$field::mask}; mask }
}) | *
);
}};
( $periph:path, $instance:expr, $reg:ident $([$offset:expr])*, $value:expr ) => {{
#[allow(unused_imports)]
use $periph::{*};
(*$instance).$reg $([$offset])*.write($value);
}};
}
/// Modify a RWRegister or UnsafeRWRegister.
///
/// # Examples
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// // Safely acquire the peripheral instance (will panic if already acquired)
/// let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
///
/// // Update the register to ensure bit 3 is set.
/// modify_reg!(stm32ral::gpio, gpioa, ODR, |reg| reg | (1<<3));
///
/// // Write values to specific fields. Unspecified fields are left unchanged.
/// modify_reg!(stm32ral::gpio, gpioa, MODER, MODER3: Output, MODER4: Analog);
///
/// // Unsafe access without requiring you to first `take()` the instance
/// unsafe { modify_reg!(stm32ral::gpio, GPIOA, MODER, MODER3: Output, MODER4: Analog) };
/// # }
/// ```
///
/// To support register arrays, each macro form also supports one or more array indices after the
/// register. For example, `modify_reg!(stm32ral::gpio, gpioa, ODR[2], |reg| reg | (1<<3));` sets
/// a high bit in the third register of an `ODR` register array.
///
/// # Usage
/// Like `write_reg!`, this macro can be used in two ways, either with a modification of the entire
/// register, or by specifying which fields to change and what value to change them to.
///
/// In both cases, the first arguments are:
/// * the path to the peripheral module: `stm32ral::gpio`,
/// * a reference to the instance of that peripheral: 'gpioa' (anything which dereferences to
/// `RegisterBlock`, such as `Instance`, `&Instance`, `&RegisterBlock`, or
/// `*const RegisterBlock`),
/// * the register (and offset, for arrays) you wish you access: `MODER` (a field on the
/// `RegisterBlock`).
///
/// In the whole-register usage, the final argument is a closure that accepts the current value
/// of the register and returns the new value to write:
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
/// // Turn on PA3 without affecting anything else.
/// modify_reg!(stm32ral::gpio, gpioa, ODR, |reg| reg | (1<<3));
/// # }
/// ```
///
/// Otherwise, the remaining arguments are `Field: Value` pairs:
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
/// // Set PA3 to Output, PA4 to Analog, and leave everything else unchanged.
/// modify_reg!(stm32ral::gpio, gpioa, MODER, MODER3: 0b01, MODER4: 0b11);
/// # }
/// ```
///
/// For fields with annotated values, you can also specify a named value:
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
/// // As above, but with named values.
/// modify_reg!(stm32ral::gpio, gpioa, MODER, MODER3: Output, MODER4: Analog);
/// # }
/// ```
///
/// This macro expands to calling `(*instance).register.write(value)`.
/// When called with a closure, `(*instance).register.read()` is called, the result
/// passed in to the closure, and the return value of the closure is used for `value`.
/// When called with `Field: Value` arguments, the current value is read and then masked
/// according to the specified fields, and then ORd with the OR of each field value,
/// each masked and shifted appropriately for the field. The named values are brought into scope
/// by `use peripheral::register::field::*` for each field. The same constants could just be
/// specified manually:
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
/// // As above, but being explicit about named values.
/// modify_reg!(stm32ral::gpio, gpioa, MODER, MODER3: stm32ral::gpio::MODER::MODER3::RW::Output,
/// MODER4: stm32ral::gpio::MODER::MODER4::RW::Analog);
/// # }
/// ```
///
/// The fully expanded form is equivalent to:
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
/// // As above, but expanded.
/// (*gpioa).MODER.write(
/// (
/// // First read the current value...
/// (*gpioa).MODER.read()
/// // Then AND it with an appropriate mask...
/// &
/// !( stm32ral::gpio::MODER::MODER3::mask | stm32ral::gpio::MODER::MODER4::mask )
/// )
/// // Then OR with each field value.
/// |
/// ((stm32ral::gpio::MODER::MODER3::RW::Output << stm32ral::gpio::MODER::MODER3::offset)
/// & stm32ral::gpio::MODER::MODER3::mask)
/// |
/// ((stm32ral::gpio::MODER::MODER4::RW::Analog << stm32ral::gpio::MODER::MODER3::offset)
/// & stm32ral::gpio::MODER::MODER3::mask)
/// );
/// # }
/// ```
///
/// # Safety
/// This macro will require an unsafe function or block when used with an UnsafeRWRegister,
/// but not if used with RWRegister.
///
/// When run in an unsafe context, peripheral instances are directly accessible without requiring
/// having called `take()` beforehand:
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// unsafe { modify_reg!(stm32ral::gpio, GPIOA, MODER, MODER3: Output, MODER4: Analog) };
/// # }
/// ```
/// This works because `GPIOA` is a `*const RegisterBlock` in the `stm32ral::gpio` module;
/// and the macro brings such constants into scope and then dereferences the provided reference.
#[macro_export]
macro_rules! modify_reg {
( $periph:path, $instance:expr, $reg:ident $([$offset:expr])*, $( $field:ident : $value:expr ),+ $(,)? ) => {{
#[allow(unused_imports)]
use $periph::{*};
#[allow(unused_imports)]
(*$instance).$reg $([$offset])*.write(
((*$instance).$reg $([$offset])*.read() & !( $({ use $periph::{$reg::$field::mask}; mask }) | * ))
| $({
use $periph::{$reg::$field::{W::*, RW::*}};
($value << { use $periph::{$reg::$field::offset}; offset })
& { use $periph::{$reg::$field::mask}; mask }
}) | *
);
}};
( $periph:path, $instance:expr, $reg:ident $([$offset:expr])*, $fn:expr ) => {{
#[allow(unused_imports)]
use $periph::{*};
(*$instance).$reg $([$offset])*.write($fn((*$instance).$reg $([$offset])*.read()));
}};
}
/// Read the value from a RORegister, RWRegister, UnsafeRORegister, or UnsafeRWRegister.
///
/// # Examples
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// // Safely acquire the peripheral instance (will panic if already acquired)
/// let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
///
/// // Read the whole register.
/// let val = read_reg!(stm32ral::gpio, gpioa, IDR);
///
/// // Read one field from the register.
/// let val = read_reg!(stm32ral::gpio, gpioa, IDR, IDR2);
///
/// // Read multiple fields from the register.
/// let (val1, val2, val3) = read_reg!(stm32ral::gpio, gpioa, IDR, IDR0, IDR1, IDR2);
///
/// // Check if one field is equal to a specific value, with the field's named values in scope.
/// while read_reg!(stm32ral::gpio, gpioa, IDR, IDR2 == High) {}
///
/// // Unsafe access without requiring you to first `take()` the instance
/// let val = unsafe { read_reg!(stm32ral::gpio, GPIOA, IDR) };
/// # }
/// ```
///
/// To support register arrays, each macro form also supports one or more array indices after the
/// register. For example, `read_reg!(stm32ral::gpio, gpioa, ODR[2]);` reads from the third
/// register of an `ODR` register array.
///
/// # Usage
/// Like `write_reg!`, this macro can be used multiple ways, either reading the entire register or
/// reading a one or more fields from it and potentially performing a comparison with one field.
///
/// In all cases, the first arguments are:
/// * the path to the peripheral module: `stm32ral::gpio`,
/// * a reference to the instance of that peripheral: 'gpioa' (anything which dereferences to
/// `RegisterBlock`, such as `Instance`, `&Instance`, `&RegisterBlock`, or
/// `*const RegisterBlock`),
/// * the register (and offset, for arrays) you wish to access: `IDR` (a field on the
/// `RegisterBlock`).
///
/// In the whole-register usage, the macro simply returns the register's value:
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
/// // Read the entire value of GPIOA.IDR into `val`.
/// let val = read_reg!(stm32ral::gpio, gpioa, IDR);
/// # }
/// ```
///
/// For reading individual fields, the macro masks and shifts appropriately:
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
/// // Read just the value of the field GPIOA.IDR2 into `val`.
/// let val = read_reg!(stm32ral::gpio, gpioa, IDR, IDR2);
///
/// // As above, but expanded for exposition:
/// let val = ((*gpioa).IDR.read() & stm32ral::gpio::IDR::IDR2::mask)
/// >> stm32ral::gpio::IDR::IDR2::offset;
///
/// // Read multiple fields
/// let (val1, val2) = read_reg!(stm32ral::gpio, gpioa, IDR, IDR2, IDR3);
///
/// // As above, but expanded for exposition:
/// let (val1, val2) = { let val = (*gpioa).IDR.read();
/// ((val & stm32ral::gpio::IDR::IDR2::mask) >> stm32ral::gpio::IDR::IDR2::offset,
/// (val & stm32ral::gpio::IDR::IDR3::mask) >> stm32ral::gpio::IDR::IDR3::offset,
/// )};
/// # }
/// ```
///
/// For comparing a single field, the macro masks and shifts and then performs the comparison:
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
/// # let rcc = stm32ral::rcc::RCC::take().unwrap();
/// // Loop while PA2 is High.
/// while read_reg!(stm32ral::gpio, gpioa, IDR, IDR2 == High) {}
///
/// // Only proceed if the clock is not the HSI.
/// if read_reg!(stm32ral::rcc, rcc, CFGR, SWS != HSI) { }
///
/// // Equivalent expansion:
/// if (((*rcc).CFGR.read() & stm32ral::rcc::CFGR::SWS::mask)
/// >> stm32ral::rcc::CFGR::SWS::offset) != stm32ral::rcc::CFGR::SWS::R::HSI { }
/// # }
/// ```
///
/// # Safety
/// This macro will require an unsafe function or block when used with an UnsafeRWRegister or
/// UnsafeRORegister, but not if used with RWRegister, or RORegister.
///
/// When run in an unsafe context, peripheral instances are directly accessible without requiring
/// having called `take()` beforehand:
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// let val = unsafe { read_reg!(stm32ral::gpio, GPIOA, MODER) };
/// # }
/// ```
/// This works because `GPIOA` is a `*const RegisterBlock` in the `stm32ral::gpio` module;
/// and the macro brings such constants into scope and then dereferences the provided reference.
#[macro_export]
macro_rules! read_reg {
( $periph:path, $instance:expr, $reg:ident $([$offset:expr])*, $( $field:ident ),+ $(,)? ) => {{
#[allow(unused_imports)]
use $periph::{*};
let val = ((*$instance).$reg $([$offset])*.read());
( $({
#[allow(unused_imports)]
use $periph::{$reg::$field::{mask, offset, R::*, RW::*}};
(val & mask) >> offset
}) , *)
}};
( $periph:path, $instance:expr, $reg:ident $([$offset:expr])*, $field:ident $($cmp:tt)* ) => {{
#[allow(unused_imports)]
use $periph::{*};
#[allow(unused_imports)]
use $periph::{$reg::$field::{mask, offset, R::*, RW::*}};
(((*$instance).$reg $([$offset])*.read() & mask) >> offset) $($cmp)*
}};
( $periph:path, $instance:expr, $reg:ident $([$offset:expr])* ) => {{
#[allow(unused_imports)]
use $periph::{*};
((*$instance).$reg $([$offset])*.read())
}};
}
/// Reset a RWRegister, UnsafeRWRegister, WORegister, or UnsafeWORegister to its reset value.
///
/// # Examples
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// // Safely acquire the peripheral instance (will panic if already acquired)
/// let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
///
/// // Reset PA14 and PA15 to their reset state
/// reset_reg!(stm32ral::gpio, gpioa, GPIOA, MODER, MODER14, MODER15);
///
/// // Reset the entire GPIOA.MODER to its reset state
/// reset_reg!(stm32ral::gpio, gpioa, GPIOA, MODER);
/// # }
/// ```
///
/// To support register arrays, each macro form also supports one or more array indices after
/// the register. For example, `reset_reg!(stm32ral::gpio, gpioa, GPIOA, ODR[2]);` resets the
/// third register in an `ODR` register array.
///
/// # Usage
/// Like `write_reg!`, this macro can be used in two ways, either resetting the entire register
/// or just resetting specific fields within in. The register or fields are written with their
/// reset values.
///
/// In both cases, the first arguments are:
/// * the path to the peripheral module: `stm32ral::gpio`,
/// * a reference to the instance of that peripheral: 'gpioa' (anything which dereferences to
/// `RegisterBlock`, such as `Instance`, `&Instance`, `&RegisterBlock`, or
/// `*const RegisterBlock`),
/// * the module for the instance of that peripheral: `GPIOA`,
/// * the register (and offset, for arrays) you wish to access: `MODER` (a field on the
/// `RegisterBlock`).
///
/// In the whole-register usage, that's it:
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
/// // Reset the entire GPIOA.MODER
/// reset_reg!(stm32ral::gpio, gpioa, GPIOA, MODER);
/// # }
/// ```
///
/// Otherwise, the remaining arguments are each field names:
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
/// // Reset the JTAG pins
/// reset_reg!(stm32ral::gpio, gpioa, GPIOA, MODER, MODER13, MODER14, MODER15);
/// reset_reg!(stm32ral::gpio, gpioa, GPIOB, MODER, MODER3, MODER4);
/// # }
/// ```
///
/// The second form is only available to RWRegister and UnsafeRWRegister, since `.read()` is
/// not available for WORegister and UnsafeWORegister.
///
/// This macro expands to calling `(*$instance).$register.write(value)`, where
/// `value` is either the register's reset value, or the current read value of the register
/// masked appropriately and combined with the reset value for each field.
///
/// # Safety
/// This macro will require an unsafe function or block when used with an UnsafeRWRegister or
/// UnsafeRORegister, but not if used with RWRegister or RORegister.
///
/// When run in an unsafe context, peripheral instances are directly accessible without requiring
/// having called `take()` beforehand:
/// ```rust,no_run
/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
/// unsafe { reset_reg!(stm32ral::gpio, GPIOA, GPIOA, MODER) };
/// # }
/// ```
/// This works because `GPIOA` is a `*const RegisterBlock` in the `stm32ral::gpio` module;
/// and the macro brings such constants into scope and then dereferences the provided reference.
///
/// Note that the second argument is a `*const` and the third is a path; despite both being written
/// `GPIOA` they are not the same thing.
#[macro_export]
macro_rules! reset_reg {
( $periph:path, $instance:expr, $instancemod:path, $reg:ident $([$offset:expr])*, $( $field:ident ),+ $(,)? ) => {{
#[allow(unused_imports)]
use $periph::{*};
use $periph::{$instancemod::{reset}};
#[allow(unused_imports)]
(*$instance).$reg $([$offset])*.write({
let resetmask: u32 = $({ use $periph::{$reg::$field::mask}; mask }) | *;
((*$instance).$reg $([$offset])*.read() & !resetmask) | (reset.$reg & resetmask)
});
}};
( $periph:path, $instance:expr, $instancemod:path, $reg:ident $([$offset:expr])*) => {{
#[allow(unused_imports)]
use $periph::{*};
use $periph::{$instancemod::{reset}};
(*$instance).$reg $([$offset])*.write(reset.$reg);
}};
}