//! [`Monotonic`] impl for the i.MX RT. //! //! # Example //! //! ``` //! use rtic_monotonics::imxrt::*; //! use rtic_monotonics::imxrt::Gpt1 as Mono; //! //! fn init() { //! // Obtain ownership of the timer register block //! let gpt1 = unsafe { imxrt_ral::gpt::GPT1::instance() }; //! //! // Configure the timer clock source and determine its tick rate //! let timer_tickrate_hz = 1_000_000; //! //! // Generate timer token to ensure correct timer interrupt handler is used //! let token = rtic_monotonics::create_imxrt_gpt1_token!(); //! //! // Start the monotonic //! Mono::start(timer_tickrate_hz, gpt1, token); //! } //! //! async fn usage() { //! loop { //! // Use the monotonic //! let timestamp = Mono::now().ticks(); //! Mono::delay(100.millis()).await; //! } //! } //! ``` use crate::{Monotonic, TimeoutError, TimerQueue}; use atomic_polyfill::{compiler_fence, AtomicU32, Ordering}; pub use fugit::{self, ExtU64}; use imxrt_ral as ral; const TIMER_HZ: u32 = 1_000_000; #[doc(hidden)] #[macro_export] macro_rules! __internal_create_imxrt_timer_interrupt { ($mono_timer:ident, $timer:ident, $timer_token:ident) => {{ #[no_mangle] #[allow(non_snake_case)] unsafe extern "C" fn $timer() { $crate::imxrt::$mono_timer::__tq().on_monotonic_interrupt(); } pub struct $timer_token; unsafe impl $crate::InterruptToken<$crate::imxrt::$mono_timer> for $timer_token {} $timer_token }}; } /// Register GPT1 interrupt for the monotonic. #[cfg(feature = "imxrt_gpt1")] #[macro_export] macro_rules! create_imxrt_gpt1_token { () => {{ $crate::__internal_create_imxrt_timer_interrupt!(Gpt1, GPT1, Gpt1Token) }}; } /// Register GPT2 interrupt for the monotonic. #[cfg(feature = "imxrt_gpt2")] #[macro_export] macro_rules! create_imxrt_gpt2_token { () => {{ $crate::__internal_create_imxrt_timer_interrupt!(Gpt2, GPT2, Gpt2Token) }}; } // Credits to the `time-driver` of `embassy-stm32`. // // Clock timekeeping works with something we call "periods", which are time intervals // of 2^31 ticks. The Clock counter value is 32 bits, so one "overflow cycle" is 2 periods. // // A `period` count is maintained in parallel to the Timer hardware `counter`, like this: // - `period` and `counter` start at 0 // - `period` is incremented on overflow (at counter value 0) // - `period` is incremented "midway" between overflows (at counter value 0x8000_0000) // // Therefore, when `period` is even, counter is in 0..0x7FFF_FFFF. When odd, counter is in 0x8000_0000..0xFFFF_FFFF // This allows for now() to return the correct value even if it races an overflow. // // To get `now()`, `period` is read first, then `counter` is read. If the counter value matches // the expected range for the `period` parity, we're done. If it doesn't, this means that // a new period start has raced us between reading `period` and `counter`, so we assume the `counter` value // corresponds to the next period. // // `period` is a 32bit integer, so it overflows on 2^32 * 2^31 / 1_000_000 seconds of uptime, which is 292471 years. fn calc_now(period: u32, counter: u32) -> u64 { (u64::from(period) << 31) + u64::from(counter ^ ((period & 1) << 31)) } macro_rules! make_timer { ($mono_name:ident, $timer:ident, $period:ident, $tq:ident$(, doc: ($($doc:tt)*))?) => { /// Monotonic timer queue implementation. $( #[cfg_attr(docsrs, doc(cfg($($doc)*)))] )? pub struct $mono_name; use ral::gpt::$timer; /// Number of 2^31 periods elapsed since boot. static $period: AtomicU32 = AtomicU32::new(0); static $tq: TimerQueue<$mono_name> = TimerQueue::new(); impl $mono_name { /// Starts the monotonic timer. /// - `tick_freq_hz`: The tick frequency of the given timer. /// - `gpt`: The GPT timer register block instance. /// - `_interrupt_token`: Required for correct timer interrupt handling. /// This method must be called only once. pub fn start(tick_freq_hz: u32, gpt: $timer, _interrupt_token: impl crate::InterruptToken) { // Find a prescaler that creates our desired tick frequency let previous_prescaler = ral::read_reg!(ral::gpt, gpt, PR, PRESCALER) + 1; let previous_clock_freq = tick_freq_hz * previous_prescaler; assert!((previous_clock_freq % TIMER_HZ) == 0, "Unable to find a fitting prescaler value!\n Input: {}/{}\n Desired: {}", previous_clock_freq, previous_prescaler, TIMER_HZ); let prescaler = previous_clock_freq / TIMER_HZ; assert!(prescaler > 0); assert!(prescaler <= 4096); // Disable the timer. ral::modify_reg!(ral::gpt, gpt, CR, EN: 0); // Clear all status registers. ral::write_reg!(ral::gpt, gpt, SR, 0b11_1111); // Base configuration ral::modify_reg!(ral::gpt, gpt, CR, ENMOD: 1, // Clear timer state FRR: 1, // Free-Run mode ); // Reset period $period.store(0, Ordering::Relaxed); // Prescaler ral::modify_reg!(ral::gpt, gpt, PR, PRESCALER: (prescaler - 1), // Scale to our desired clock rate ); // Enable interrupts ral::write_reg!(ral::gpt, gpt, IR, ROVIE: 1, // Rollover interrupt OF1IE: 1, // Timer compare 1 interrupt (for half-periods) OF2IE: 1, // Timer compare 2 interrupt (for dynamic wakeup) ); // Configure half-period interrupt ral::write_reg!(ral::gpt, gpt, OCR[0], 0x8000_0000); // Dynamic interrupt register; for now initialize to zero // so it gets combined with rollover interrupt ral::write_reg!(ral::gpt, gpt, OCR[1], 0x0000_0000); // Enable the timer ral::modify_reg!(ral::gpt, gpt, CR, EN: 1); ral::modify_reg!(ral::gpt, gpt, CR, ENMOD: 0, // Keep state when disabled ); $tq.initialize(Self {}); // SAFETY: We take full ownership of the peripheral and interrupt vector, // plus we are not using any external shared resources so we won't impact // basepri/source masking based critical sections. unsafe { crate::set_monotonic_prio(ral::NVIC_PRIO_BITS, ral::Interrupt::$timer); cortex_m::peripheral::NVIC::unmask(ral::Interrupt::$timer); } } /// Used to access the underlying timer queue #[doc(hidden)] pub fn __tq() -> &'static TimerQueue<$mono_name> { &$tq } /// Delay for some duration of time. #[inline] pub async fn delay(duration: ::Duration) { $tq.delay(duration).await; } /// Timeout at a specific time. pub async fn timeout_at( instant: ::Instant, future: F, ) -> Result { $tq.timeout_at(instant, future).await } /// Timeout after a specific duration. #[inline] pub async fn timeout_after( duration: ::Duration, future: F, ) -> Result { $tq.timeout_after(duration, future).await } /// Delay to some specific time instant. #[inline] pub async fn delay_until(instant: ::Instant) { $tq.delay_until(instant).await; } } #[cfg(feature = "embedded-hal-async")] impl embedded_hal_async::delay::DelayUs for $mono_name { #[inline] async fn delay_us(&mut self, us: u32) { Self::delay((us as u64).micros()).await; } #[inline] async fn delay_ms(&mut self, ms: u32) { Self::delay((ms as u64).millis()).await; } } impl embedded_hal::delay::DelayUs for $mono_name { fn delay_us(&mut self, us: u32) { let done = Self::now() + (us as u64).micros(); while Self::now() < done {} } } impl Monotonic for $mono_name { type Instant = fugit::TimerInstantU64; type Duration = fugit::TimerDurationU64; const ZERO: Self::Instant = Self::Instant::from_ticks(0); fn now() -> Self::Instant { let gpt = unsafe{ $timer::instance() }; // Important: period **must** be read first. let period = $period.load(Ordering::Relaxed); compiler_fence(Ordering::Acquire); let counter = ral::read_reg!(ral::gpt, gpt, CNT); Self::Instant::from_ticks(calc_now(period, counter)) } fn set_compare(instant: Self::Instant) { let gpt = unsafe{ $timer::instance() }; // Set the timer regardless of whether it is multiple periods in the future, // or even already in the past. // The worst thing that can happen is a spurious wakeup, and with a timer // period of half an hour, this is hardly a problem. let ticks = instant.duration_since_epoch().ticks(); let ticks_wrapped = ticks as u32; ral::write_reg!(ral::gpt, gpt, OCR[1], ticks_wrapped); } fn clear_compare_flag() { let gpt = unsafe{ $timer::instance() }; ral::write_reg!(ral::gpt, gpt, SR, OF2: 1); } fn pend_interrupt() { cortex_m::peripheral::NVIC::pend(ral::Interrupt::$timer); } fn on_interrupt() { let gpt = unsafe{ $timer::instance() }; let (rollover, half_rollover) = ral::read_reg!(ral::gpt, gpt, SR, ROV, OF1); if rollover != 0 { $period.fetch_add(1, Ordering::Relaxed); ral::write_reg!(ral::gpt, gpt, SR, ROV: 1); } if half_rollover != 0 { $period.fetch_add(1, Ordering::Relaxed); ral::write_reg!(ral::gpt, gpt, SR, OF1: 1); } } } }; } #[cfg(feature = "imxrt_gpt1")] make_timer!(Gpt1, GPT1, GPT1_HALFPERIODS, GPT1_TQ); #[cfg(feature = "imxrt_gpt2")] make_timer!(Gpt2, GPT2, GPT2_HALFPERIODS, GPT2_TQ);