1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
use super::CriticalSection;
use core::cell::{Ref, RefCell, RefMut, UnsafeCell};
/// A mutex based on critical sections.
///
/// # Example
///
/// ```no_run
/// # use critical_section::Mutex;
/// # use std::cell::Cell;
///
/// static FOO: Mutex<Cell<i32>> = Mutex::new(Cell::new(42));
///
/// fn main() {
/// critical_section::with(|cs| {
/// FOO.borrow(cs).set(43);
/// });
/// }
///
/// fn interrupt_handler() {
/// let _x = critical_section::with(|cs| FOO.borrow(cs).get());
/// }
/// ```
///
///
/// # Design
///
/// [`std::sync::Mutex`] has two purposes. It converts types that are [`Send`]
/// but not [`Sync`] into types that are both; and it provides
/// [interior mutability]. `critical_section::Mutex`, on the other hand, only adds
/// `Sync`. It does *not* provide interior mutability.
///
/// This was a conscious design choice. It is possible to create multiple
/// [`CriticalSection`] tokens, either by nesting critical sections or `Copy`ing
/// an existing token. As a result, it would not be sound for [`Mutex::borrow`]
/// to return `&mut T`, because there would be nothing to prevent calling
/// `borrow` multiple times to create aliased `&mut T` references.
///
/// The solution is to include a runtime check to ensure that each resource is
/// borrowed only once. This is what `std::sync::Mutex` does. However, this is
/// a runtime cost that may not be required in all circumstances. For instance,
/// `Mutex<Cell<T>>` never needs to create `&mut T` or equivalent.
///
/// If `&mut T` is needed, the simplest solution is to use `Mutex<RefCell<T>>`,
/// which is the closest analogy to `std::sync::Mutex`. [`RefCell`] inserts the
/// exact runtime check necessary to guarantee that the `&mut T` reference is
/// unique.
///
/// To reduce verbosity when using `Mutex<RefCell<T>>`, we reimplement some of
/// `RefCell`'s methods on it directly.
///
/// ```no_run
/// # use critical_section::Mutex;
/// # use std::cell::RefCell;
///
/// static FOO: Mutex<RefCell<i32>> = Mutex::new(RefCell::new(42));
///
/// fn main() {
/// critical_section::with(|cs| {
/// // Instead of calling this
/// let _ = FOO.borrow(cs).take();
/// // Call this
/// let _ = FOO.take(cs);
/// // `RefCell::borrow` and `RefCell::borrow_mut` are renamed to
/// // `borrow_ref` and `borrow_ref_mut` to avoid name collisions
/// let _: &mut i32 = &mut *FOO.borrow_ref_mut(cs);
/// })
/// }
/// ```
///
/// [`std::sync::Mutex`]: https://doc.rust-lang.org/std/sync/struct.Mutex.html
/// [interior mutability]: https://doc.rust-lang.org/reference/interior-mutability.html
#[derive(Debug)]
pub struct Mutex<T> {
// The `UnsafeCell` is not strictly necessary here: In theory, just using `T` should
// be fine.
// However, without `UnsafeCell`, the compiler may use niches inside `T`, and may
// read the niche value _without locking the mutex_. As we don't provide interior
// mutability, this is still not violating any aliasing rules and should be perfectly
// fine. But as the cost of adding `UnsafeCell` is very small, we add it out of
// cautiousness, just in case the reason `T` is not `Sync` in the first place is
// something very obscure we didn't consider.
inner: UnsafeCell<T>,
}
impl<T> Mutex<T> {
/// Creates a new mutex.
#[inline]
pub const fn new(value: T) -> Self {
Mutex {
inner: UnsafeCell::new(value),
}
}
/// Gets a mutable reference to the contained value when the mutex is already uniquely borrowed.
///
/// This does not require locking or a critical section since it takes `&mut self`, which
/// guarantees unique ownership already. Care must be taken when using this method to
/// **unsafely** access `static mut` variables, appropriate fences must be used to prevent
/// unwanted optimizations.
#[inline]
pub fn get_mut(&mut self) -> &mut T {
unsafe { &mut *self.inner.get() }
}
/// Unwraps the contained value, consuming the mutex.
#[inline]
pub fn into_inner(self) -> T {
self.inner.into_inner()
}
/// Borrows the data for the duration of the critical section.
#[inline]
pub fn borrow<'cs>(&'cs self, _cs: CriticalSection<'cs>) -> &'cs T {
unsafe { &*self.inner.get() }
}
}
impl<T> Mutex<RefCell<T>> {
/// Borrow the data and call [`RefCell::replace`]
///
/// This is equivalent to `self.borrow(cs).replace(t)`
///
/// # Panics
///
/// This call could panic. See the documentation for [`RefCell::replace`]
/// for more details.
#[inline]
#[track_caller]
pub fn replace<'cs>(&'cs self, cs: CriticalSection<'cs>, t: T) -> T {
self.borrow(cs).replace(t)
}
/// Borrow the data and call [`RefCell::replace_with`]
///
/// This is equivalent to `self.borrow(cs).replace_with(f)`
///
/// # Panics
///
/// This call could panic. See the documentation for
/// [`RefCell::replace_with`] for more details.
#[inline]
#[track_caller]
pub fn replace_with<'cs, F>(&'cs self, cs: CriticalSection<'cs>, f: F) -> T
where
F: FnOnce(&mut T) -> T,
{
self.borrow(cs).replace_with(f)
}
/// Borrow the data and call [`RefCell::borrow`]
///
/// This is equivalent to `self.borrow(cs).borrow()`
///
/// # Panics
///
/// This call could panic. See the documentation for [`RefCell::borrow`]
/// for more details.
#[inline]
#[track_caller]
pub fn borrow_ref<'cs>(&'cs self, cs: CriticalSection<'cs>) -> Ref<'cs, T> {
self.borrow(cs).borrow()
}
/// Borrow the data and call [`RefCell::borrow_mut`]
///
/// This is equivalent to `self.borrow(cs).borrow_mut()`
///
/// # Panics
///
/// This call could panic. See the documentation for [`RefCell::borrow_mut`]
/// for more details.
#[inline]
#[track_caller]
pub fn borrow_ref_mut<'cs>(&'cs self, cs: CriticalSection<'cs>) -> RefMut<'cs, T> {
self.borrow(cs).borrow_mut()
}
}
impl<T: Default> Mutex<RefCell<T>> {
/// Borrow the data and call [`RefCell::take`]
///
/// This is equivalent to `self.borrow(cs).take()`
///
/// # Panics
///
/// This call could panic. See the documentation for [`RefCell::take`]
/// for more details.
#[inline]
#[track_caller]
pub fn take<'cs>(&'cs self, cs: CriticalSection<'cs>) -> T {
self.borrow(cs).take()
}
}
// NOTE A `Mutex` can be used as a channel so the protected data must be `Send`
// to prevent sending non-Sendable stuff (e.g. access tokens) across different
// threads.
unsafe impl<T> Sync for Mutex<T> where T: Send {}
/// ``` compile_fail
/// fn bad(cs: critical_section::CriticalSection) -> &u32 {
/// let x = critical_section::Mutex::new(42u32);
/// x.borrow(cs)
/// }
/// ```
#[cfg(doctest)]
const BorrowMustNotOutliveMutexTest: () = ();