timer queue

This commit is contained in:
Jorge Aparicio 2018-04-19 18:38:12 +02:00
parent 53dbbad891
commit eb8282a571
6 changed files with 476 additions and 6 deletions

View file

@ -29,3 +29,6 @@ rustflags = [
"-C", "linker=arm-none-eabi-ld",
"-Z", "linker-flavor=ld",
]
[build]
target = "thumbv7m-none-eabi"

View file

@ -2,5 +2,17 @@ target remote :3333
monitor arm semihosting enable
# # send captured ITM to the file itm.fifo
# # (the microcontroller SWO pin must be connected to the programmer SWO pin)
# # 8000000 must match the core clock frequency
# monitor tpiu config internal itm.fifo uart off 8000000
# OR: make the microcontroller SWO pin output compatible with UART (8N1)
# 2000000 is the frequency of the SWO pin
monitor tpiu config external uart off 8000000 2000000
# enable ITM port 0
monitor itm port 0 on
load
step

View file

@ -15,19 +15,19 @@ version = "0.3.2"
[dependencies]
cortex-m = "0.4.0"
cortex-m-rtfm-macros = { path = "macros", version = "0.3.1" }
heapless = "0.2.6"
rtfm-core = "0.2.0"
untagged-option = "0.1.1"
[target.'cfg(target_arch = "x86_64")'.dev-dependencies]
compiletest_rs = "0.3.5"
[dev-dependencies.cortex-m-rt]
features = ["abort-on-panic"]
version = "0.3.9"
[dev-dependencies]
panic-abort = "0.1.1"
[dev-dependencies.stm32f103xx]
features = ["rt"]
version = "0.8.0"
version = "0.9.0"
[features]
cm7-r0p1 = ["cortex-m/cm7-r0p1"]

248
examples/tq.rs Normal file
View file

@ -0,0 +1,248 @@
// #![deny(unsafe_code)]
// #![deny(warnings)]
#![allow(dead_code)]
#![feature(proc_macro)]
#![no_std]
#[macro_use]
extern crate cortex_m;
extern crate cortex_m_rtfm as rtfm;
extern crate panic_abort;
extern crate stm32f103xx;
use cortex_m::peripheral::syst::SystClkSource;
use cortex_m::peripheral::{DWT, ITM, SCB};
use rtfm::ll::{Consumer, FreeList, Message, Node, Payload, Producer, RingBuffer, Slot, TimerQueue};
use rtfm::{app, Resource, Threshold};
use stm32f103xx::Interrupt;
const ACAP: usize = 2;
const MS: u32 = 8_000;
app! {
device: stm32f103xx,
resources: {
/* timer queue */
static TQ: TimerQueue<Task, [Message<Task>; 2]>;
/* a */
// payloads w/ after
static AN0: Node<u32> = Node::new();
static AN1: Node<u32> = Node::new();
static AFL: FreeList<u32> = FreeList::new();
// payloads w/o after
static AQ: RingBuffer<u32, [u32; ACAP + 1]> = RingBuffer::new();
static AQC: Consumer<'static, u32, [u32; ACAP + 1]>;
static AQP: Producer<'static, u32, [u32; ACAP + 1]>;
/* exti0 */
static Q1: RingBuffer<Task1, [Task1; ACAP + 1]> = RingBuffer::new();
static Q1C: Consumer<'static, Task1, [Task1; ACAP + 1]>;
static Q1P: Producer<'static, Task1, [Task1; ACAP + 1]>;
},
init: {
resources: [AN0, AN1, Q1, AQ],
},
tasks: {
EXTI1: {
path: exti1,
resources: [TQ, AFL],
priority: 1,
// async: [a],
},
// dispatch interrupt
EXTI0: {
path: exti0,
resources: [AQC, Q1C],
priority: 1,
},
// timer queue
SYS_TICK: {
path: sys_tick,
resources: [TQ, AQP, Q1P, AFL],
priority: 1,
},
},
}
pub fn init(mut p: ::init::Peripherals, r: init::Resources) -> init::LateResources {
// ..
/* executed after `init` end */
p.core.DWT.enable_cycle_counter();
unsafe { p.core.DWT.cyccnt.write(0) };
p.core.SYST.set_clock_source(SystClkSource::Core);
p.core.SYST.enable_interrupt();
// populate the free list
r.AFL.push(Slot::new(r.AN0));
r.AFL.push(Slot::new(r.AN1));
let (aqp, aqc) = r.AQ.split();
let (q1p, q1c) = r.Q1.split();
init::LateResources {
TQ: TimerQueue::new(p.core.SYST),
AQC: aqc,
AQP: aqp,
Q1C: q1c,
Q1P: q1p,
}
}
pub fn idle() -> ! {
rtfm::set_pending(Interrupt::EXTI1);
loop {
rtfm::wfi()
}
}
fn a(_t: &mut Threshold, payload: u32) {
let bl = DWT::get_cycle_count();
unsafe {
iprintln!(
&mut (*ITM::ptr()).stim[0],
"a(bl={}, payload={})",
bl,
payload
)
}
}
fn exti1(t: &mut Threshold, r: EXTI1::Resources) {
/* expansion */
let bl = DWT::get_cycle_count();
let mut async = a::Async::new(bl, r.TQ, r.AFL);
/* end of expansion */
unsafe { iprintln!(&mut (*ITM::ptr()).stim[0], "EXTI0(bl={})", bl) }
async.a(t, 100 * MS, 0).unwrap();
async.a(t, 50 * MS, 1).unwrap();
// rtfm::bkpt();
}
/* auto generated */
fn exti0(_t: &mut Threshold, mut r: EXTI0::Resources) {
while let Some(task) = r.Q1C.dequeue() {
match task {
Task1::a => {
let payload = r.AQC.dequeue().unwrap_or_else(|| unreachable!());
a(&mut unsafe { Threshold::new(1) }, payload);
}
}
}
}
fn sys_tick(t: &mut Threshold, r: SYS_TICK::Resources) {
#[allow(non_snake_case)]
let SYS_TICK::Resources {
mut AFL,
mut AQP,
mut Q1P,
mut TQ,
} = r;
TQ.claim_mut(t, |tq, t| {
tq.syst.disable_counter();
if let Some(m) = tq.queue.pop() {
match m.task {
Task::a => {
// read payload
let (payload, slot) = unsafe { Payload::<u32>::from(m.payload) }.read();
// enqueue a new `a` task
AQP.claim_mut(t, |aqp, t| {
aqp.enqueue(payload).ok().unwrap();
Q1P.claim_mut(t, |q1p, _| {
q1p.enqueue(Task1::a).ok().unwrap_or_else(|| unreachable!());
rtfm::set_pending(Interrupt::EXTI0);
});
});
// return free slot to the free list
AFL.claim_mut(t, |afl, _| afl.push(slot));
}
}
if let Some(m) = tq.queue.peek().cloned() {
// set up a new interrupt
let now = DWT::get_cycle_count();
if let Some(timeout) = tq.baseline.wrapping_add(m.deadline).checked_sub(now) {
// TODO deal with the 24-bit limit
tq.syst.set_reload(timeout);
tq.syst.clear_current();
tq.syst.enable_counter();
// update the timer queue baseline
tq.baseline = now;
tq.queue.iter_mut().for_each(|m| m.deadline -= timeout);
} else {
// next message already expired, pend immediately
// NOTE(unsafe) atomic write to a stateless (from the programmer PoV) register
unsafe { (*SCB::ptr()).icsr.write(1 << 26) }
}
} else {
// no message left to process
}
} else {
unreachable!()
}
});
}
// Tasks dispatched at a priority of 1
#[allow(non_camel_case_types)]
#[derive(Clone, Copy)]
pub enum Task1 {
a,
}
// All tasks
#[allow(non_camel_case_types)]
#[derive(Clone, Copy)]
pub enum Task {
a,
}
mod a {
use rtfm::{Resource, Threshold};
use Task;
#[allow(non_snake_case)]
pub struct Async {
bl: u32,
TQ: ::EXTI1::TQ,
AFL: ::EXTI1::AFL,
}
impl Async {
#[allow(non_snake_case)]
pub fn new(bl: u32, TQ: ::EXTI1::TQ, AFL: ::EXTI1::AFL) -> Self {
Async { bl, TQ, AFL }
}
pub fn a(&mut self, t: &mut Threshold, after: u32, payload: u32) -> Result<(), u32> {
if let Some(slot) = self.AFL.claim_mut(t, |afl, _| afl.pop()) {
let bl = self.bl;
self.TQ
.claim_mut(t, |tq, _| tq.insert(bl, after, Task::a, payload, slot))
.map_err(|(p, slot)| {
self.AFL.claim_mut(t, |afl, _| afl.push(slot));
p
})
} else {
Err(payload)
}
}
}
}

View file

@ -77,13 +77,16 @@
//! > A description of the RTFM task and resource model. [PDF][rtfm]
//!
//! [rtfm]: http://www.diva-portal.org/smash/get/diva2:1005680/FULLTEXT01.pdf
#![deny(missing_docs)]
#![deny(warnings)]
// #![deny(missing_docs)]
// #![deny(warnings)]
#![feature(const_fn)]
#![feature(proc_macro)]
#![feature(unsize)]
#![no_std]
extern crate cortex_m;
extern crate cortex_m_rtfm_macros;
extern crate heapless;
extern crate rtfm_core;
extern crate untagged_option;
@ -101,6 +104,8 @@ use cortex_m::peripheral::NVIC;
use cortex_m::register::basepri;
pub mod examples;
#[doc(hidden)]
pub mod ll;
/// Executes the closure `f` in a preemption free context
///

202
src/ll.rs Normal file
View file

@ -0,0 +1,202 @@
use core::cmp::Ordering;
use core::marker::Unsize;
use core::ptr;
use cortex_m::peripheral::{DWT, SCB, SYST};
use heapless::binary_heap::{BinaryHeap, Min};
pub use heapless::ring_buffer::{Consumer, Producer, RingBuffer};
use untagged_option::UntaggedOption;
#[derive(Clone, Copy)]
pub struct Message<T> {
// relative to the TimerQueue baseline
pub deadline: u32,
pub task: T,
pub payload: usize,
}
impl<T> Message<T> {
fn new<P>(dl: u32, task: T, payload: Payload<P>) -> Self {
Message {
deadline: dl,
task,
payload: payload.erase(),
}
}
}
impl<T> PartialEq for Message<T> {
fn eq(&self, other: &Self) -> bool {
self.deadline.eq(&other.deadline)
}
}
impl<T> Eq for Message<T> {}
impl<T> PartialOrd for Message<T> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.deadline.partial_cmp(&other.deadline)
}
}
impl<T> Ord for Message<T> {
fn cmp(&self, other: &Self) -> Ordering {
self.deadline.cmp(&other.deadline)
}
}
pub struct TimerQueue<T, A>
where
A: Unsize<[Message<T>]>,
{
pub syst: SYST,
pub baseline: u32,
pub queue: BinaryHeap<Message<T>, A, Min>,
}
impl<T, A> TimerQueue<T, A>
where
A: Unsize<[Message<T>]>,
{
pub fn new(syst: SYST) -> Self {
TimerQueue {
baseline: 0,
queue: BinaryHeap::new(),
syst,
}
}
pub fn insert<P>(
&mut self,
bl: u32,
after: u32,
task: T,
payload: P,
slot: Slot<P>,
) -> Result<(), (P, Slot<P>)> {
if self.queue.len() == self.queue.capacity() {
Err((payload, slot))
} else {
if self.queue.is_empty() {
self.baseline = bl;
}
let dl = bl.wrapping_add(after).wrapping_sub(self.baseline);
if self.queue.peek().map(|m| dl < m.deadline).unwrap_or(true) {
// the new message is the most urgent; set a new timeout
let now = DWT::get_cycle_count();
if let Some(timeout) = dl.wrapping_add(self.baseline).checked_sub(now) {
self.syst.disable_counter();
self.syst.set_reload(timeout);
self.syst.clear_current();
self.syst.enable_counter();
} else {
// message already expired, pend immediately
// NOTE(unsafe) atomic write to a stateless (from the programmer PoV) register
unsafe { (*SCB::ptr()).icsr.write(1 << 26) }
}
}
self.queue
.push(Message::new(dl, task, slot.write(payload)))
.unwrap_or_else(|_| unreachable!());
Ok(())
}
}
}
pub struct Node<T>
where
T: 'static,
{
data: UntaggedOption<T>,
next: Option<&'static mut Node<T>>,
}
impl<T> Node<T> {
pub const fn new() -> Self {
Node {
data: UntaggedOption::none(),
next: None,
}
}
}
pub struct Payload<T>
where
T: 'static,
{
node: &'static mut Node<T>,
}
impl<T> Payload<T> {
pub unsafe fn from(ptr: usize) -> Self {
Payload {
node: &mut *(ptr as *mut _),
}
}
pub fn erase(self) -> usize {
self.node as *mut _ as usize
}
pub fn read(self) -> (T, Slot<T>) {
unsafe {
let payload = ptr::read(&self.node.data.some);
(payload, Slot::new(self.node))
}
}
}
pub struct Slot<T>
where
T: 'static,
{
node: &'static mut Node<T>,
}
impl<T> Slot<T> {
pub fn new(node: &'static mut Node<T>) -> Self {
Slot { node }
}
pub fn write(self, data: T) -> Payload<T> {
unsafe {
ptr::write(&mut self.node.data.some, data);
Payload { node: self.node }
}
}
}
pub struct FreeList<T>
where
T: 'static,
{
head: Option<Slot<T>>,
}
impl<T> FreeList<T> {
pub const fn new() -> Self {
FreeList { head: None }
}
pub fn is_empty(&self) -> bool {
self.head.is_none()
}
pub fn pop(&mut self) -> Option<Slot<T>> {
self.head.take().map(|head| {
self.head = head.node.next.take().map(Slot::new);
head
})
}
pub fn push(&mut self, free: Slot<T>) {
free.node.next = self.head.take().map(|slot| slot.node);
self.head = Some(Slot::new(free.node));
}
}