Refactor race condition free timer helper (#850)

* Implement half_period_counter in rtic-time

* Rename compute_now to calculate_now, use it in stm32 and imxrt

* Add more tests

* Add some docs

* Fix clippy warning, add imxrt timer to monotonics tests

* Bump dependency version to make sure monotonics will build properly

* Add changelog to rtic-monotonics

* Add more docs

* Add more docs

* Finish documentation

* Fix typos

* Switch from atomic-polyfill to portable-atomic

* Some more doc fixes

* More doc fixes

* Minor doc fix

* Minor doc fix

* Fix Atomics not existing

* Fix example

* Minor example improvement

* Revert back to atomic-polyfill

* Fix cargo.toml formatting

* Remove atomic-polyfill

* Attempt to fix unused macro warning

* Remove atomics completely from half period counter

* Minor doc fix

* Doc fixes

* Doc fixes

* Remove obsolete comment

* Fix ordering in monotonic initialization sequence
This commit is contained in:
Finomnis 2023-12-04 15:53:02 +01:00 committed by GitHub
parent 3de5f793f3
commit c227a71d24
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
10 changed files with 350 additions and 49 deletions

View file

@ -9,7 +9,8 @@ For each category, *Added*, *Changed*, *Fixed* add new entries at the top!
### Added
- `should_dequeue` to the `Monotonic` trait to handle bugged timers
- `half_period_counter` containing utilities for implementing a half-period-counter based monotonic.
- `should_dequeue_check` to the `Monotonic` trait to handle bugged timers.
### Changed

View file

@ -1,6 +1,6 @@
[package]
name = "rtic-time"
version = "1.0.0"
version = "1.1.0"
edition = "2021"
authors = [

View file

@ -0,0 +1,229 @@
//! Utility to implement a race condition free half-period based monotonic.
//!
//! # Background
//!
//! Monotonics are continuous and never wrap (in a reasonable amount of time), while
//! the underlying hardware usually wraps frequently and has interrupts to indicate that
//! a wrap happened.
//!
//! The biggest problem when implementing a monotonic from such hardware is that there exists
//! a non-trivial race condition while reading data from the timer. Let's assume we increment
//! a period counter every time an overflow interrupt happens.
//! Which should we then read first when computing the current time? The period counter or
//! the timer value?
//! - When reading the timer value first, an overflow interrupt could happen before we read
//! the period counter, causing the calculated time to be much too high
//! - When reading the period counter first, the timer value could overflow before we
//! read it, causing the calculated time to be much too low
//!
//! The reason this is non-trivil to solve is because even critical sections do not help
//! much - the inherent problem here is that the timer value continues to change, and there
//! is no way to read it together with the period counter in an atomic way.
//!
//! # Solution
//!
//! This module provides utilities to solve this problem in a reliable, race-condition free way.
//! A second interrupt must be added at the half-period mark, which effectively converts the period counter
//! to a half-period counter. This creates one bit of overlap between the
//! timer value and the period counter, which makes it mathematically possible to solve the
//! race condition.
//!
//! The following steps have to be fulfilled to make this reliable:
//! - The period counter gets incremented twice per period; once when the timer overflow happens and once
//! at the half-period mark. For example, a 16-bit timer would require the period counter to be
//! incremented at the values `0x0000` and `0x8000`.
//! - The timer value and the period counter must be in sync. After the overflow interrupt
//! was processed, the period counter must be even, and after the half-way interrupt was
//! processed, the period counter must be odd.
//! - Both the overflow interrupt and the half-way interrupt must be processed within half a
//! timer period. This means those interrupts should be the highest priority in the
//! system - disabling them for more than half a period will cause the monotonic to misbehave.
//!
//! If those conditions are fulfilled, the [`calculate_now`] function will reliably
//! return the correct time value.
//!
//! # Why does this work?
//!
//! It's complicated. In essence, this one bit of overlap gets used to make
//! it irrelevant whether the period counter was already incremented or not.
//! For example, during the second part of the timer period, it is irrelevant if the
//! period counter is `2` (before the interrupt) or `3` (after the interrupt) - [`calculate_now`]
//! will yield the same result. Then half a period later, in the first part of the next timer period,
//! it is irrelevant if the period counter is `3` or `4` - they again will yield the same result.
//!
//! This means that as long as we read the period counter **before** the timer value, we will
//! always get the correct result, given that the interrupts are not delayed by more than half a period.
//!
//! # Example
//!
//! This example takes a 16-bit timer and uses a 32-bit period counter
//! to extend the timer to 47-bit. Note that one bit gets lost because
//! this method requires the period counter to be increased twice per period.
//!
//! The resulting time value is returned as a `u64`.
//!
//! ```rust
//! # fn timer_stop() {}
//! # fn timer_reset() {}
//! # fn timer_enable_overflow_interrupt() {}
//! # fn timer_enable_compare_interrupt(_val: u16) {}
//! # fn timer_start() {}
//! # fn overflow_interrupt_happened() -> bool { false }
//! # fn compare_interrupt_happened() -> bool { false }
//! # fn clear_overflow_interrupt() {}
//! # fn clear_compare_interrupt() {}
//! # fn timer_get_value() -> u16 { 0 }
//! use core::sync::atomic::{AtomicU32, Ordering};
//!
//! static HALF_PERIOD_COUNTER: AtomicU32 = AtomicU32::new(0);
//!
//! struct MyMonotonic;
//!
//! impl MyMonotonic {
//! fn init() {
//! timer_stop();
//! timer_reset();
//! HALF_PERIOD_COUNTER.store(0, Ordering::SeqCst);
//! timer_enable_overflow_interrupt();
//! timer_enable_compare_interrupt(0x8000);
//! // Both the period counter and the timer are reset
//! // to zero and the interrupts are enabled.
//! // This means the period counter and the timer value
//! // are in sync, so we can now enable the timer.
//! timer_start();
//! }
//!
//! fn on_interrupt() {
//! if overflow_interrupt_happened() {
//! clear_overflow_interrupt();
//! HALF_PERIOD_COUNTER.fetch_add(1, Ordering::Relaxed);
//! }
//! if compare_interrupt_happened() {
//! clear_compare_interrupt();
//! HALF_PERIOD_COUNTER.fetch_add(1, Ordering::Relaxed);
//! }
//! }
//!
//! fn now() -> u64 {
//! rtic_time::half_period_counter::calculate_now(
//! HALF_PERIOD_COUNTER.load(Ordering::Relaxed),
//! || timer_get_value(),
//! )
//! }
//! }
//! ```
//!
use core::sync::atomic::{compiler_fence, Ordering};
/// The value of the timer's count register.
pub trait TimerValue {
/// Bit size of the timer. Does not need to be a multiple of `8`.
const BITS: u32;
}
macro_rules! impl_timer_value {
($t:ty) => {
impl TimerValue for $t {
const BITS: u32 = Self::BITS;
}
};
}
impl_timer_value!(u8);
impl_timer_value!(u16);
impl_timer_value!(u32);
impl_timer_value!(u64);
/// Operations a type has to support
/// in order to be used as the return value
/// of [`calculate_now`].
pub trait TimerOps: Copy {
/// All bits set to `1`.
const MAX: Self;
/// The lowest bit set to `1`.
const ONE: Self;
/// The `^` operation.
fn xor(self, other: Self) -> Self;
/// The `&` operation.
fn and(self, other: Self) -> Self;
/// The `+` operation.
fn add(self, other: Self) -> Self;
/// The `<<` operation.
fn left_shift(self, amount: u32) -> Self;
}
macro_rules! impl_timer_ops {
($t:ty) => {
impl TimerOps for $t {
const MAX: Self = Self::MAX;
const ONE: Self = 1;
#[inline]
fn xor(self, other: Self) -> Self {
self ^ other
}
#[inline]
fn and(self, other: Self) -> Self {
self & other
}
#[inline]
fn add(self, other: Self) -> Self {
self + other
}
#[inline]
fn left_shift(self, amount: u32) -> Self {
self << amount
}
}
};
}
impl_timer_ops!(u16);
impl_timer_ops!(u32);
impl_timer_ops!(u64);
impl_timer_ops!(u128);
/// Calculates the current time from the half period counter and the timer value.
///
/// # Arguments
///
/// * `half_periods` - The period counter value. If read from an atomic, can use `Ordering::Relaxed`.
/// * `timer_value` - A closure/function that when called produces the current timer value.
pub fn calculate_now<P, T, F, O>(half_periods: P, timer_value: F) -> O
where
T: TimerValue,
O: From<P> + From<T> + TimerOps,
F: FnOnce() -> T,
{
// Important: half_period **must** be read first.
// Otherwise we have another mathematical race condition.
let half_periods = O::from(half_periods);
compiler_fence(Ordering::Acquire);
let timer_value = O::from(timer_value());
// Credits to the `time-driver` of `embassy-stm32`.
//
// Given that our clock counter value is 32 bits.
//
// Clock timekeeping works with something we call "periods", which are time intervals
// of 2^31 ticks. The Clock counter value is 32 bits, so one "overflow cycle" is 2 periods.
//
// A `period` count is maintained in parallel to the Timer hardware `counter`, like this:
// - `period` and `counter` start at 0
// - `period` is incremented on overflow (at counter value 0)
// - `period` is incremented "midway" between overflows (at counter value 0x8000_0000)
//
// Therefore, when `period` is even, counter is in 0..0x7FFF_FFFF. When odd, counter is in 0x8000_0000..0xFFFF_FFFF
// This allows for now() to return the correct value even if it races an overflow.
//
// To get `now()`, `period` is read first, then `counter` is read. If the counter value matches
// the expected range for the `period` parity, we're done. If it doesn't, this means that
// a new period start has raced us between reading `period` and `counter`, so we assume the `counter` value
// corresponds to the next period.
let upper_half = half_periods.left_shift(T::BITS - 1);
let lower_half = O::ONE.left_shift(T::BITS - 1).and(upper_half);
upper_half.add(lower_half.xor(timer_value))
}

View file

@ -19,6 +19,7 @@ use linked_list::{Link, LinkedList};
pub use monotonic::Monotonic;
use rtic_common::dropper::OnDrop;
pub mod half_period_counter;
mod linked_list;
mod monotonic;

View file

@ -0,0 +1,95 @@
use rtic_time::half_period_counter::calculate_now;
macro_rules! do_test_u8 {
($periods:literal, $counter:literal, $expected:literal) => {{
let periods: u32 = $periods;
let counter: u8 = $counter;
let expected: u32 = $expected;
let actual: u32 = calculate_now(periods, || counter);
assert_eq!(
actual, expected,
"Expected: ({} | {}) => {}, got: {}",
periods, counter, expected, actual
);
}};
}
macro_rules! do_test_u16 {
($periods:literal, $counter:literal, $expected:literal) => {{
let periods: u16 = $periods;
let counter: u16 = $counter;
let expected: u32 = $expected;
let actual: u32 = calculate_now(periods, || counter);
assert_eq!(
actual, expected,
"Expected: ({} | {}) => {}, got: {}",
periods, counter, expected, actual
);
}};
}
#[test]
fn half_period_time_counter_u8() {
do_test_u8!(0, 0, 0);
do_test_u8!(0, 1, 1);
do_test_u8!(0, 126, 126);
do_test_u8!(1, 126, 382); // This is why it's important to load the periods before the counter
do_test_u8!(0, 127, 127);
do_test_u8!(1, 127, 383);
do_test_u8!(0, 128, 128);
do_test_u8!(1, 128, 128);
do_test_u8!(0, 129, 129);
do_test_u8!(1, 129, 129);
do_test_u8!(1, 254, 254);
do_test_u8!(2, 254, 510);
do_test_u8!(1, 255, 255);
do_test_u8!(2, 255, 511);
do_test_u8!(1, 0, 256);
do_test_u8!(2, 0, 256);
do_test_u8!(1, 1, 257);
do_test_u8!(2, 1, 257);
do_test_u8!(2, 126, 382);
do_test_u8!(3, 126, 638);
do_test_u8!(2, 127, 383);
do_test_u8!(3, 127, 639);
do_test_u8!(2, 128, 384);
do_test_u8!(3, 128, 384);
do_test_u8!(2, 129, 385);
do_test_u8!(3, 129, 385);
}
#[test]
fn half_period_time_counter_u16() {
do_test_u16!(0, 0, 0);
do_test_u16!(0, 1, 1);
do_test_u16!(0, 32766, 32766);
do_test_u16!(1, 32766, 98302); // This is why it's important to load the periods before the counter
do_test_u16!(0, 32767, 32767);
do_test_u16!(1, 32767, 98303);
do_test_u16!(0, 32768, 32768);
do_test_u16!(1, 32768, 32768);
do_test_u16!(0, 32769, 32769);
do_test_u16!(1, 32769, 32769);
do_test_u16!(1, 65534, 65534);
do_test_u16!(2, 65534, 131070);
do_test_u16!(1, 65535, 65535);
do_test_u16!(2, 65535, 131071);
do_test_u16!(1, 0, 65536);
do_test_u16!(2, 0, 65536);
do_test_u16!(1, 1, 65537);
do_test_u16!(2, 1, 65537);
do_test_u16!(2, 32766, 98302);
do_test_u16!(3, 32766, 163838);
do_test_u16!(2, 32767, 98303);
do_test_u16!(3, 32767, 163839);
do_test_u16!(2, 32768, 98304);
do_test_u16!(3, 32768, 98304);
do_test_u16!(2, 32769, 98305);
do_test_u16!(3, 32769, 98305);
}