Monotonic rewrite (#874)

* Rework timer_queue and monotonic architecture

Goals:
 * make Monotonic purely internal
 * make Monotonic purely tick passed, no fugit involved
 * create a wrapper struct in the user's code via a macro that then
   converts the "now" from the tick based monotonic to a fugit based
   timestamp

We need to proxy the delay functions of the timer queue anyway,
so we could simply perform the conversion in those proxy functions.

* Update cargo.lock

* Update readme of rtic-time

* CI: ESP32: Redact esp_image: Too volatile

* Fixup: Changelog double entry rebase mistake

---------

Co-authored-by: Henrik Tjäder <henrik@tjaders.com>
This commit is contained in:
Finomnis 2024-04-11 00:00:38 +02:00 committed by GitHub
parent e4cc5fd17b
commit 8c23e178f3
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
54 changed files with 2637 additions and 1676 deletions

View file

@ -2,63 +2,24 @@
//!
//! To run this test, you need to activate the `critical-section/std` feature.
use std::{
fmt::Debug,
task::{Poll, Waker},
};
use cassette::Cassette;
use parking_lot::Mutex;
use rtic_time::{Monotonic, TimerQueue};
use rtic_time::timer_queue::{TimerQueue, TimerQueueBackend};
static NOW: Mutex<Option<Instant>> = Mutex::new(None);
mod peripheral {
use parking_lot::Mutex;
use std::{
sync::atomic::{AtomicU64, Ordering},
task::{Poll, Waker},
};
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Debug)]
pub struct Duration(u64);
use super::TestMonoBackend;
impl Duration {
pub const fn from_ticks(millis: u64) -> Self {
Self(millis)
}
pub fn as_ticks(&self) -> u64 {
self.0
}
}
impl core::ops::Add<Duration> for Duration {
type Output = Duration;
fn add(self, rhs: Duration) -> Self::Output {
Self(self.0 + rhs.0)
}
}
impl From<Duration> for Instant {
fn from(value: Duration) -> Self {
Instant(value.0)
}
}
static WAKERS: Mutex<Vec<Waker>> = Mutex::new(Vec::new());
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Debug)]
pub struct Instant(u64);
impl Instant {
const ZERO: Self = Self(0);
static NOW: AtomicU64 = AtomicU64::new(0);
static WAKERS: Mutex<Vec<Waker>> = Mutex::new(Vec::new());
pub fn tick() -> bool {
// If we've never ticked before, initialize the clock.
if NOW.lock().is_none() {
*NOW.lock() = Some(Instant::ZERO);
}
// We've ticked before, add one to the clock
else {
let now = Instant::now();
let new_time = now + Duration(1);
*NOW.lock() = Some(new_time);
}
NOW.fetch_add(1, Ordering::Release);
let had_wakers = !WAKERS.lock().is_empty();
// Wake up all things waiting for a specific time to happen.
@ -66,22 +27,18 @@ impl Instant {
waker.wake_by_ref();
}
let had_interrupt = TestMono::tick(false);
let had_interrupt = TestMonoBackend::tick(false);
had_interrupt || had_wakers
}
pub fn now() -> Self {
NOW.lock().clone().unwrap_or(Instant::ZERO)
pub fn now() -> u64 {
NOW.load(Ordering::Acquire)
}
pub fn elapsed(&self) -> Duration {
Duration(Self::now().0 - self.0)
}
pub async fn wait_until(time: Instant) {
pub async fn wait_until(time: u64) {
core::future::poll_fn(|ctx| {
if Instant::now() >= time {
if now() >= time {
Poll::Ready(())
} else {
WAKERS.lock().push(ctx.waker().clone());
@ -92,51 +49,21 @@ impl Instant {
}
}
impl From<u64> for Instant {
fn from(value: u64) -> Self {
Self(value)
}
}
static COMPARE: Mutex<Option<u64>> = Mutex::new(None);
static TIMER_QUEUE: TimerQueue<TestMonoBackend> = TimerQueue::new();
impl core::ops::Add<Duration> for Instant {
type Output = Instant;
pub struct TestMonoBackend;
fn add(self, rhs: Duration) -> Self::Output {
Self(self.0 + rhs.0)
}
}
impl core::ops::Sub<Duration> for Instant {
type Output = Instant;
fn sub(self, rhs: Duration) -> Self::Output {
Self(self.0 - rhs.0)
}
}
impl core::ops::Sub<Instant> for Instant {
type Output = Duration;
fn sub(self, rhs: Instant) -> Self::Output {
Duration(self.0 - rhs.0)
}
}
static COMPARE: Mutex<Option<Instant>> = Mutex::new(None);
static TIMER_QUEUE: TimerQueue<TestMono> = TimerQueue::new();
pub struct TestMono;
impl TestMono {
impl TestMonoBackend {
pub fn tick(force_interrupt: bool) -> bool {
let now = Instant::now();
let now = peripheral::now();
let compare_reached = Some(now) == Self::compare();
let interrupt = compare_reached || force_interrupt;
if interrupt {
unsafe {
TestMono::queue().on_monotonic_interrupt();
TestMonoBackend::timer_queue().on_monotonic_interrupt();
}
true
} else {
@ -144,35 +71,26 @@ impl TestMono {
}
}
/// Initialize the monotonic.
pub fn init() {
Self::queue().initialize(Self);
}
/// Used to access the underlying timer queue
pub fn queue() -> &'static TimerQueue<TestMono> {
&TIMER_QUEUE
}
pub fn compare() -> Option<Instant> {
pub fn compare() -> Option<u64> {
COMPARE.lock().clone()
}
}
impl Monotonic for TestMono {
const ZERO: Self::Instant = Instant::ZERO;
const TICK_PERIOD: Self::Duration = Duration::from_ticks(1);
impl TestMonoBackend {
fn init() {
Self::timer_queue().initialize(Self);
}
}
type Instant = Instant;
impl TimerQueueBackend for TestMonoBackend {
type Ticks = u64;
type Duration = Duration;
fn now() -> Self::Instant {
Instant::now()
fn now() -> Self::Ticks {
peripheral::now()
}
fn set_compare(instant: Self::Instant) {
let _ = COMPARE.lock().insert(instant);
fn set_compare(instant: Self::Ticks) {
*COMPARE.lock() = Some(instant);
}
fn clear_compare_flag() {}
@ -180,42 +98,40 @@ impl Monotonic for TestMono {
fn pend_interrupt() {
Self::tick(true);
}
fn timer_queue() -> &'static TimerQueue<Self> {
&TIMER_QUEUE
}
}
#[test]
fn timer_queue() {
TestMono::init();
let start = Instant::ZERO;
TestMonoBackend::init();
let start = 0;
let build_delay_test = |pre_delay: Option<u64>, delay: u64| {
let delay = Duration::from_ticks(delay);
let pre_delay = pre_delay.map(Duration::from_ticks);
let total = if let Some(pre_delay) = pre_delay {
pre_delay + delay
} else {
delay
};
let total_millis = total.as_ticks();
async move {
// A `pre_delay` simulates a delay in scheduling,
// without the `pre_delay` being present in the timer
// queue
if let Some(pre_delay) = pre_delay {
Instant::wait_until(start + pre_delay).await;
peripheral::wait_until(start + pre_delay).await;
}
TestMono::queue().delay(delay).await;
TestMonoBackend::timer_queue().delay(delay).await;
let elapsed = start.elapsed().as_ticks();
println!("{total_millis} ticks delay reached after {elapsed} ticks");
let elapsed = peripheral::now() - start;
println!("{total} ticks delay reached after {elapsed} ticks");
// Expect a delay of one longer, to compensate for timer uncertainty
if elapsed != total_millis + 1 {
panic!(
"{total_millis} ticks delay was not on time ({elapsed} ticks passed instead)"
);
if elapsed != total + 1 {
panic!("{total} ticks delay was not on time ({elapsed} ticks passed instead)");
}
}
};
@ -259,31 +175,31 @@ fn timer_queue() {
// We only poll the waiting futures if an
// interrupt occured or if an artificial delay
// has passed.
if Instant::tick() {
if peripheral::tick() {
poll!(d1, d2, d3);
}
if Instant::now() == 0.into() {
if peripheral::now() == 0 {
// First, we want to be waiting for our 300 tick delay
assert_eq!(TestMono::compare(), Some(301.into()));
assert_eq!(TestMonoBackend::compare(), Some(301));
}
if Instant::now() == 100.into() {
if peripheral::now() == 100 {
// After 100 ticks, we enqueue a new delay that is supposed to last
// until the 200-tick-mark
assert_eq!(TestMono::compare(), Some(201.into()));
assert_eq!(TestMonoBackend::compare(), Some(201));
}
if Instant::now() == 201.into() {
if peripheral::now() == 201 {
// After 200 ticks, we dequeue the 200-tick-mark delay and
// requeue the 300 tick delay
assert_eq!(TestMono::compare(), Some(301.into()));
assert_eq!(TestMonoBackend::compare(), Some(301));
}
if Instant::now() == 301.into() {
if peripheral::now() == 301 {
// After 300 ticks, we dequeue the 300-tick-mark delay and
// go to the 400 tick delay that is already enqueued
assert_eq!(TestMono::compare(), Some(401.into()));
assert_eq!(TestMonoBackend::compare(), Some(401));
}
}