Monotonic rewrite (#874)

* Rework timer_queue and monotonic architecture

Goals:
 * make Monotonic purely internal
 * make Monotonic purely tick passed, no fugit involved
 * create a wrapper struct in the user's code via a macro that then
   converts the "now" from the tick based monotonic to a fugit based
   timestamp

We need to proxy the delay functions of the timer queue anyway,
so we could simply perform the conversion in those proxy functions.

* Update cargo.lock

* Update readme of rtic-time

* CI: ESP32: Redact esp_image: Too volatile

* Fixup: Changelog double entry rebase mistake

---------

Co-authored-by: Henrik Tjäder <henrik@tjaders.com>
This commit is contained in:
Finomnis 2024-04-11 00:00:38 +02:00 committed by GitHub
parent e4cc5fd17b
commit 8c23e178f3
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
54 changed files with 2637 additions and 1676 deletions

View file

@ -1,112 +1,158 @@
//! [`Monotonic`] implementations for i.MX RT's GPT peripherals.
//! [`Monotonic`](rtic_time::Monotonic) implementations for i.MX RT's GPT peripherals.
//!
//! # Example
//!
//! ```
//! use rtic_monotonics::imxrt::*;
//! use rtic_monotonics::imxrt::Gpt1 as Mono;
//! use rtic_monotonics::imxrt::prelude::*;
//! imxrt_gpt1_monotonic!(Mono, 1_000_000);
//!
//! fn init() {
//! // Obtain ownership of the timer register block
//! // Obtain ownership of the timer register block.
//! let gpt1 = unsafe { imxrt_ral::gpt::GPT1::instance() };
//!
//! // Configure the timer clock source and determine its tick rate
//! let timer_tickrate_hz = 1_000_000;
//!
//! // Generate timer token to ensure correct timer interrupt handler is used
//! let token = rtic_monotonics::create_imxrt_gpt1_token!();
//! // Configure the timer tick rate as specified earlier
//! todo!("Configure the gpt1 peripheral to a tick rate of 1_000_000");
//!
//! // Start the monotonic
//! Mono::start(timer_tickrate_hz, gpt1, token);
//! Mono::start(gpt1);
//! }
//!
//! async fn usage() {
//! loop {
//! // Use the monotonic
//! let timestamp = Mono::now().ticks();
//! let timestamp = Mono::now();
//! Mono::delay(100.millis()).await;
//! }
//! }
//! ```
use crate::{Monotonic, TimeoutError, TimerQueue};
use atomic_polyfill::{AtomicU32, Ordering};
pub use fugit::{self, ExtU64, ExtU64Ceil};
use rtic_time::half_period_counter::calculate_now;
use rtic_time::{
half_period_counter::calculate_now,
timer_queue::{TimerQueue, TimerQueueBackend},
};
use imxrt_ral as ral;
pub use imxrt_ral as ral;
const TIMER_HZ: u32 = 1_000_000;
/// Common definitions and traits for using the i.MX RT monotonics
pub mod prelude {
#[cfg(feature = "imxrt_gpt1")]
pub use crate::imxrt_gpt1_monotonic;
#[cfg(feature = "imxrt_gpt2")]
pub use crate::imxrt_gpt2_monotonic;
pub use crate::Monotonic;
pub use fugit::{self, ExtU64, ExtU64Ceil};
}
#[doc(hidden)]
#[macro_export]
macro_rules! __internal_create_imxrt_timer_interrupt {
($mono_timer:ident, $timer:ident, $timer_token:ident) => {{
($mono_backend:ident, $timer:ident) => {
#[no_mangle]
#[allow(non_snake_case)]
unsafe extern "C" fn $timer() {
$crate::imxrt::$mono_timer::__tq().on_monotonic_interrupt();
use $crate::TimerQueueBackend;
$crate::imxrt::$mono_backend::timer_queue().on_monotonic_interrupt();
}
};
}
#[doc(hidden)]
#[macro_export]
macro_rules! __internal_create_imxrt_timer_struct {
($name:ident, $mono_backend:ident, $timer:ident, $tick_rate_hz:expr) => {
/// A `Monotonic` based on the GPT peripheral.
struct $name;
impl $name {
/// Starts the `Monotonic`.
///
/// This method must be called only once.
pub fn start(gpt: $crate::imxrt::ral::gpt::$timer) {
$crate::__internal_create_imxrt_timer_interrupt!($mono_backend, $timer);
$crate::imxrt::$mono_backend::_start(gpt);
}
}
pub struct $timer_token;
impl $crate::TimerQueueBasedMonotonic for $name {
type Backend = $crate::imxrt::$mono_backend;
type Instant = $crate::fugit::Instant<
<Self::Backend as $crate::TimerQueueBackend>::Ticks,
1,
{ $tick_rate_hz },
>;
type Duration = $crate::fugit::Duration<
<Self::Backend as $crate::TimerQueueBackend>::Ticks,
1,
{ $tick_rate_hz },
>;
}
unsafe impl $crate::InterruptToken<$crate::imxrt::$mono_timer> for $timer_token {}
$timer_token
}};
$crate::rtic_time::impl_embedded_hal_delay_fugit!($name);
$crate::rtic_time::impl_embedded_hal_async_delay_fugit!($name);
};
}
/// Register the GPT1 interrupt for the monotonic.
/// Create a GPT1 based monotonic and register the GPT1 interrupt for it.
///
/// See [`crate::imxrt`] for more details.
///
/// # Arguments
///
/// * `name` - The name that the monotonic type will have.
/// * `tick_rate_hz` - The tick rate of the timer peripheral. It's the user's responsibility
/// to configure the peripheral to the given frequency before starting the
/// monotonic.
#[cfg(feature = "imxrt_gpt1")]
#[macro_export]
macro_rules! create_imxrt_gpt1_token {
() => {{
$crate::__internal_create_imxrt_timer_interrupt!(Gpt1, GPT1, Gpt1Token)
}};
macro_rules! imxrt_gpt1_monotonic {
($name:ident, $tick_rate_hz:expr) => {
$crate::__internal_create_imxrt_timer_struct!($name, Gpt1Backend, GPT1, $tick_rate_hz);
};
}
/// Register the GPT2 interrupt for the monotonic.
/// Create a GPT2 based monotonic and register the GPT2 interrupt for it.
///
/// See [`crate::imxrt`] for more details.
///
/// # Arguments
///
/// * `name` - The name that the monotonic type will have.
/// * `tick_rate_hz` - The tick rate of the timer peripheral. It's the user's responsibility
/// to configure the peripheral to the given frequency before starting the
/// monotonic.
#[cfg(feature = "imxrt_gpt2")]
#[macro_export]
macro_rules! create_imxrt_gpt2_token {
() => {{
$crate::__internal_create_imxrt_timer_interrupt!(Gpt2, GPT2, Gpt2Token)
}};
macro_rules! imxrt_gpt2_monotonic {
($name:ident, $tick_rate_hz:expr) => {
$crate::__internal_create_imxrt_timer_struct!($name, Gpt2Backend, GPT2, $tick_rate_hz);
};
}
macro_rules! make_timer {
($mono_name:ident, $timer:ident, $period:ident, $tq:ident$(, doc: ($($doc:tt)*))?) => {
/// Timer implementing [`Monotonic`] which runs at 1 MHz.
($mono_name:ident, $backend_name:ident, $timer:ident, $period:ident, $tq:ident$(, doc: ($($doc:tt)*))?) => {
/// GPT based [`TimerQueueBackend`].
$(
#[cfg_attr(docsrs, doc(cfg($($doc)*)))]
)?
pub struct $mono_name;
pub struct $backend_name;
use ral::gpt::$timer;
/// Number of 2^31 periods elapsed since boot.
static $period: AtomicU32 = AtomicU32::new(0);
static $tq: TimerQueue<$mono_name> = TimerQueue::new();
static $tq: TimerQueue<$backend_name> = TimerQueue::new();
impl $mono_name {
/// Starts the monotonic timer.
impl $backend_name {
/// Starts the timer.
///
/// - `tick_freq_hz`: The tick frequency of the given timer.
/// - `gpt`: The GPT timer register block instance.
/// - `_interrupt_token`: Required for correct timer interrupt handling.
/// **Do not use this function directly.**
///
/// This method must be called only once.
pub fn start(tick_freq_hz: u32, gpt: $timer, _interrupt_token: impl crate::InterruptToken<Self>) {
// Find a prescaler that creates our desired tick frequency
let previous_prescaler = ral::read_reg!(ral::gpt, gpt, PR, PRESCALER) + 1;
let previous_clock_freq = tick_freq_hz * previous_prescaler;
assert!((previous_clock_freq % TIMER_HZ) == 0,
"Unable to find a fitting prescaler value!\n Input: {}/{}\n Desired: {}",
previous_clock_freq, previous_prescaler, TIMER_HZ);
let prescaler = previous_clock_freq / TIMER_HZ;
assert!(prescaler > 0);
assert!(prescaler <= 4096);
/// Use the prelude macros instead.
pub fn _start(gpt: $timer) {
// Disable the timer.
ral::modify_reg!(ral::gpt, gpt, CR, EN: 0);
@ -122,11 +168,6 @@ macro_rules! make_timer {
// Reset period
$period.store(0, Ordering::SeqCst);
// Prescaler
ral::modify_reg!(ral::gpt, gpt, PR,
PRESCALER: (prescaler - 1), // Scale to our desired clock rate
);
// Enable interrupts
ral::write_reg!(ral::gpt, gpt, IR,
ROVIE: 1, // Rollover interrupt
@ -150,7 +191,6 @@ macro_rules! make_timer {
ENMOD: 0, // Keep state when disabled
);
// SAFETY: We take full ownership of the peripheral and interrupt vector,
// plus we are not using any external shared resources so we won't impact
// basepri/source masking based critical sections.
@ -159,65 +199,21 @@ macro_rules! make_timer {
cortex_m::peripheral::NVIC::unmask(ral::Interrupt::$timer);
}
}
/// Used to access the underlying timer queue
#[doc(hidden)]
pub fn __tq() -> &'static TimerQueue<$mono_name> {
&$tq
}
/// Delay for some duration of time.
#[inline]
pub async fn delay(duration: <Self as Monotonic>::Duration) {
$tq.delay(duration).await;
}
/// Timeout at a specific time.
pub async fn timeout_at<F: core::future::Future>(
instant: <Self as rtic_time::Monotonic>::Instant,
future: F,
) -> Result<F::Output, TimeoutError> {
$tq.timeout_at(instant, future).await
}
/// Timeout after a specific duration.
#[inline]
pub async fn timeout_after<F: core::future::Future>(
duration: <Self as Monotonic>::Duration,
future: F,
) -> Result<F::Output, TimeoutError> {
$tq.timeout_after(duration, future).await
}
/// Delay to some specific time instant.
#[inline]
pub async fn delay_until(instant: <Self as Monotonic>::Instant) {
$tq.delay_until(instant).await;
}
}
rtic_time::embedded_hal_delay_impl_fugit64!($mono_name);
impl TimerQueueBackend for $backend_name {
type Ticks = u64;
#[cfg(feature = "embedded-hal-async")]
rtic_time::embedded_hal_async_delay_impl_fugit64!($mono_name);
impl Monotonic for $mono_name {
type Instant = fugit::TimerInstantU64<TIMER_HZ>;
type Duration = fugit::TimerDurationU64<TIMER_HZ>;
const ZERO: Self::Instant = Self::Instant::from_ticks(0);
const TICK_PERIOD: Self::Duration = Self::Duration::from_ticks(1);
fn now() -> Self::Instant {
fn now() -> Self::Ticks {
let gpt = unsafe{ $timer::instance() };
Self::Instant::from_ticks(calculate_now(
calculate_now(
|| $period.load(Ordering::Relaxed),
|| ral::read_reg!(ral::gpt, gpt, CNT)
))
)
}
fn set_compare(instant: Self::Instant) {
fn set_compare(instant: Self::Ticks) {
let gpt = unsafe{ $timer::instance() };
// Set the timer regardless of whether it is multiple periods in the future,
@ -225,8 +221,7 @@ macro_rules! make_timer {
// The worst thing that can happen is a spurious wakeup, and with a timer
// period of half an hour, this is hardly a problem.
let ticks = instant.duration_since_epoch().ticks();
let ticks_wrapped = ticks as u32;
let ticks_wrapped = instant as u32;
ral::write_reg!(ral::gpt, gpt, OCR[1], ticks_wrapped);
}
@ -257,12 +252,16 @@ macro_rules! make_timer {
assert!(prev % 2 == 0, "Monotonic must have skipped an interrupt!");
}
}
fn timer_queue() -> &'static TimerQueue<Self> {
&$tq
}
}
};
}
#[cfg(feature = "imxrt_gpt1")]
make_timer!(Gpt1, GPT1, GPT1_HALFPERIODS, GPT1_TQ);
make_timer!(Gpt1, Gpt1Backend, GPT1, GPT1_HALFPERIODS, GPT1_TQ);
#[cfg(feature = "imxrt_gpt2")]
make_timer!(Gpt2, GPT2, GPT2_HALFPERIODS, GPT2_TQ);
make_timer!(Gpt2, Gpt2Backend, GPT2, GPT2_HALFPERIODS, GPT2_TQ);