456: Cancel/reschedule support for monotonics r=AfoHT a=korken89

Design document: https://hackmd.io/lhUCzrKBS-66aadO4KsSzw?view

Co-authored-by: Emil Fresk <emil.fresk@gmail.com>
This commit is contained in:
bors[bot] 2021-04-07 12:01:18 +00:00 committed by GitHub
commit 6c8257bb73
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
14 changed files with 873 additions and 297 deletions

View file

@ -58,6 +58,7 @@ rtic-monotonic = "0.1.0-alpha.0"
rtic-core = "0.3.1"
heapless = "0.6.1"
bare-metal = "1.0.0"
generic-array = "0.14"
[dependencies.dwt-systick-monotonic]
version = "0.1.0-alpha.0"

View file

@ -9,14 +9,11 @@ use panic_semihosting as _;
#[rtic::app(device = lm3s6965, dispatchers = [SSI0])]
mod app {
use dwt_systick_monotonic::{
consts::{U0, U8},
DwtSystick,
};
use dwt_systick_monotonic::DwtSystick;
use rtic::time::duration::Seconds;
#[monotonic(binds = SysTick, default = true)]
type MyMono = DwtSystick<U8, U0, U0>; // 8 MHz
type MyMono = DwtSystick<8_000_000>; // 8 MHz
#[init]
fn init(cx: init::Context) -> (init::LateResources, init::Monotonics) {

View file

@ -10,14 +10,11 @@ use panic_semihosting as _;
// NOTE: does NOT work on QEMU!
#[rtic::app(device = lm3s6965, dispatchers = [SSI0])]
mod app {
use dwt_systick_monotonic::{
consts::{U0, U8},
DwtSystick,
};
use dwt_systick_monotonic::DwtSystick;
use rtic::time::duration::Seconds;
#[monotonic(binds = SysTick, default = true)]
type MyMono = DwtSystick<U8, U0, U0>; // 8 MHz
type MyMono = DwtSystick<8_000_000>; // 8 MHz
#[init]
fn init(cx: init::Context) -> (init::LateResources, init::Monotonics) {

View file

@ -11,14 +11,11 @@ use panic_semihosting as _;
#[rtic::app(device = lm3s6965, dispatchers = [SSI0])]
mod app {
use cortex_m_semihosting::hprintln;
use dwt_systick_monotonic::{
consts::{U0, U8},
DwtSystick,
};
use dwt_systick_monotonic::DwtSystick;
use rtic::time::duration::Seconds;
#[monotonic(binds = SysTick, default = true)]
type MyMono = DwtSystick<U8, U0, U0>; // 8 MHz
type MyMono = DwtSystick<8_000_000>; // 8 MHz
#[init()]
fn init(cx: init::Context) -> (init::LateResources, init::Monotonics) {

View file

@ -9,14 +9,11 @@ use panic_semihosting as _;
#[rtic::app(device = lm3s6965, dispatchers = [SSI0])]
mod app {
use dwt_systick_monotonic::{
consts::{U0, U8},
DwtSystick,
};
use dwt_systick_monotonic::DwtSystick;
use rtic::time::duration::Seconds;
#[monotonic(binds = SysTick, default = true)]
type MyMono = DwtSystick<U8, U0, U0>; // 8 MHz
type MyMono = DwtSystick<8_000_000>; // 8 MHz
#[init]
fn init(cx: init::Context) -> (init::LateResources, init::Monotonics) {
@ -26,19 +23,93 @@ mod app {
let mono = DwtSystick::new(&mut dcb, dwt, systick, 8_000_000);
let _: Result<(), ()> = foo::spawn_after(Seconds(1_u32));
let _: Result<(), u32> = bar::spawn_after(Seconds(2_u32), 0);
let _: Result<(), (u32, u32)> = baz::spawn_after(Seconds(3_u32), 0, 1);
// Task without message passing
// Not default
let _: Result<foo::MyMono::SpawnHandle, ()> = foo::MyMono::spawn_at(MyMono::now());
let handle: Result<foo::MyMono::SpawnHandle, ()> = foo::MyMono::spawn_after(Seconds(1_u32));
let _: Result<foo::MyMono::SpawnHandle, ()> =
handle.unwrap().reschedule_after(Seconds(1_u32));
let handle: Result<foo::MyMono::SpawnHandle, ()> = foo::MyMono::spawn_after(Seconds(1_u32));
let _: Result<foo::MyMono::SpawnHandle, ()> = handle.unwrap().reschedule_at(MyMono::now());
let handle: Result<foo::MyMono::SpawnHandle, ()> = foo::MyMono::spawn_after(Seconds(1_u32));
let _: Result<(), ()> = handle.unwrap().cancel();
// Using default
let _: Result<foo::SpawnHandle, ()> = foo::spawn_at(MyMono::now());
let handle: Result<foo::SpawnHandle, ()> = foo::spawn_after(Seconds(1_u32));
let _: Result<foo::SpawnHandle, ()> = handle.unwrap().reschedule_after(Seconds(1_u32));
let handle: Result<foo::SpawnHandle, ()> = foo::spawn_after(Seconds(1_u32));
let _: Result<foo::SpawnHandle, ()> = handle.unwrap().reschedule_at(MyMono::now());
let handle: Result<foo::SpawnHandle, ()> = foo::spawn_after(Seconds(1_u32));
let _: Result<(), ()> = handle.unwrap().cancel();
// Task with single message passing
// Not default
let _: Result<bar::MyMono::SpawnHandle, u32> = bar::MyMono::spawn_at(MyMono::now(), 0);
let handle: Result<bar::MyMono::SpawnHandle, u32> =
bar::MyMono::spawn_after(Seconds(1_u32), 0);
let _: Result<bar::MyMono::SpawnHandle, ()> =
handle.unwrap().reschedule_after(Seconds(1_u32));
let handle: Result<bar::MyMono::SpawnHandle, u32> =
bar::MyMono::spawn_after(Seconds(1_u32), 0);
let _: Result<bar::MyMono::SpawnHandle, ()> = handle.unwrap().reschedule_at(MyMono::now());
let handle: Result<bar::MyMono::SpawnHandle, u32> =
bar::MyMono::spawn_after(Seconds(1_u32), 0);
let _: Result<u32, ()> = handle.unwrap().cancel();
// Using default
let _: Result<bar::SpawnHandle, u32> = bar::spawn_at(MyMono::now(), 0);
let handle: Result<bar::SpawnHandle, u32> = bar::spawn_after(Seconds(1_u32), 0);
let _: Result<bar::SpawnHandle, ()> = handle.unwrap().reschedule_after(Seconds(1_u32));
let handle: Result<bar::SpawnHandle, u32> = bar::spawn_after(Seconds(1_u32), 0);
let _: Result<bar::SpawnHandle, ()> = handle.unwrap().reschedule_at(MyMono::now());
let handle: Result<bar::SpawnHandle, u32> = bar::spawn_after(Seconds(1_u32), 0);
let _: Result<u32, ()> = handle.unwrap().cancel();
// Task with multiple message passing
// Not default
let _: Result<baz::MyMono::SpawnHandle, (u32, u32)> =
baz::MyMono::spawn_at(MyMono::now(), 0, 1);
let handle: Result<baz::MyMono::SpawnHandle, (u32, u32)> =
baz::MyMono::spawn_after(Seconds(1_u32), 0, 1);
let _: Result<baz::MyMono::SpawnHandle, ()> =
handle.unwrap().reschedule_after(Seconds(1_u32));
let handle: Result<baz::MyMono::SpawnHandle, (u32, u32)> =
baz::MyMono::spawn_after(Seconds(1_u32), 0, 1);
let _: Result<baz::MyMono::SpawnHandle, ()> = handle.unwrap().reschedule_at(MyMono::now());
let handle: Result<baz::MyMono::SpawnHandle, (u32, u32)> =
baz::MyMono::spawn_after(Seconds(1_u32), 0, 1);
let _: Result<(u32, u32), ()> = handle.unwrap().cancel();
// Using default
let _: Result<baz::SpawnHandle, (u32, u32)> = baz::spawn_at(MyMono::now(), 0, 1);
let handle: Result<baz::SpawnHandle, (u32, u32)> = baz::spawn_after(Seconds(1_u32), 0, 1);
let _: Result<baz::SpawnHandle, ()> = handle.unwrap().reschedule_after(Seconds(1_u32));
let handle: Result<baz::SpawnHandle, (u32, u32)> = baz::spawn_after(Seconds(1_u32), 0, 1);
let _: Result<baz::SpawnHandle, ()> = handle.unwrap().reschedule_at(MyMono::now());
let handle: Result<baz::SpawnHandle, (u32, u32)> = baz::spawn_after(Seconds(1_u32), 0, 1);
let _: Result<(u32, u32), ()> = handle.unwrap().cancel();
(init::LateResources {}, init::Monotonics(mono))
}
#[idle]
fn idle(_: idle::Context) -> ! {
let _: Result<(), ()> = foo::spawn_at(MyMono::now() + Seconds(3_u32));
let _: Result<(), u32> = bar::spawn_at(MyMono::now() + Seconds(4_u32), 0);
let _: Result<(), (u32, u32)> = baz::spawn_at(MyMono::now() + Seconds(5_u32), 0, 1);
loop {
cortex_m::asm::nop();
}

View file

@ -10,13 +10,10 @@ use panic_semihosting as _;
#[rtic::app(device = lm3s6965, peripherals = true, dispatchers = [SSI0])]
mod app {
use cortex_m_semihosting::debug;
use dwt_systick_monotonic::{
consts::{U0, U8},
DwtSystick,
};
use dwt_systick_monotonic::DwtSystick;
#[monotonic(binds = SysTick, default = true)]
type MyMono = DwtSystick<U8, U0, U0>; // 8 MHz
type MyMono = DwtSystick<8_000_000>; // 8 MHz
#[resources]
struct Resources {

View file

@ -21,6 +21,33 @@ pub fn codegen(
let app_name = &app.name;
let app_path = quote! {crate::#app_name};
let all_task_names: Vec<_> = app
.software_tasks
.iter()
.map(|(name, st)| {
if !st.is_extern {
let cfgs = &st.cfgs;
quote! {
#(#cfgs)*
#[allow(unused_imports)]
use #app_path::#name as #name;
}
} else {
quote!()
}
})
.chain(app.hardware_tasks.iter().map(|(name, ht)| {
if !ht.is_extern {
quote! {
#[allow(unused_imports)]
use #app_path::#name as #name;
}
} else {
quote!()
}
}))
.collect();
let mut lt = None;
match ctxt {
Context::Init => {
@ -202,6 +229,9 @@ pub fn codegen(
// Spawn caller
items.push(quote!(
#(#all_task_names)*
#(#cfgs)*
/// Spawns the task directly
pub fn spawn(#(#args,)*) -> Result<(), #ty> {
@ -247,6 +277,7 @@ pub fn codegen(
if monotonic.args.default {
items.push(quote!(pub use #m::spawn_after;));
items.push(quote!(pub use #m::spawn_at;));
items.push(quote!(pub use #m::SpawnHandle;));
}
let (enable_interrupt, pend) = if &*m_isr.to_string() == "SysTick" {
@ -264,15 +295,68 @@ pub fn codegen(
};
let user_imports = &app.user_imports;
let tq_marker = util::mark_internal_ident(&util::timer_queue_marker_ident());
items.push(quote!(
/// Holds methods related to this monotonic
pub mod #m {
// #(
// #[allow(unused_imports)]
// use #app_path::#all_task_names as #all_task_names;
// )*
use super::*;
#[allow(unused_imports)]
use #app_path::#tq_marker;
#[allow(unused_imports)]
use #app_path::#t;
#(
#[allow(unused_imports)]
#user_imports
)*
pub struct SpawnHandle {
#[doc(hidden)]
marker: u32,
}
impl SpawnHandle {
pub fn cancel(self) -> Result<#ty, ()> {
rtic::export::interrupt::free(|_| unsafe {
let tq = &mut *#app_path::#tq.as_mut_ptr();
if let Some((_task, index)) = tq.cancel_marker(self.marker) {
// Get the message
let msg = #app_path::#inputs.get_unchecked(usize::from(index)).as_ptr().read();
// Return the index to the free queue
#app_path::#fq.split().0.enqueue_unchecked(index);
Ok(msg)
} else {
Err(())
}
})
}
#[inline]
pub fn reschedule_after<D>(self, duration: D) -> Result<Self, ()>
where D: rtic::time::duration::Duration + rtic::time::fixed_point::FixedPoint,
D::T: Into<<#app_path::#mono_type as rtic::time::Clock>::T>,
{
self.reschedule_at(#app_path::#m::now() + duration)
}
pub fn reschedule_at(self, instant: rtic::time::Instant<#app_path::#mono_type>) -> Result<Self, ()>
{
rtic::export::interrupt::free(|_| unsafe {
let marker = #tq_marker;
#tq_marker = #tq_marker.wrapping_add(1);
let tq = &mut *#app_path::#tq.as_mut_ptr();
tq.update_marker(self.marker, marker, instant, || #pend).map(|_| SpawnHandle { marker })
})
}
}
#(#cfgs)*
/// Spawns the task after a set duration relative to the current time
///
@ -281,7 +365,7 @@ pub fn codegen(
pub fn spawn_after<D>(
duration: D
#(,#args)*
) -> Result<(), #ty>
) -> Result<SpawnHandle, #ty>
where D: rtic::time::duration::Duration + rtic::time::fixed_point::FixedPoint,
D::T: Into<<#app_path::#mono_type as rtic::time::Clock>::T>,
{
@ -300,7 +384,7 @@ pub fn codegen(
pub fn spawn_at(
instant: rtic::time::Instant<#app_path::#mono_type>
#(,#args)*
) -> Result<(), #ty> {
) -> Result<SpawnHandle, #ty> {
unsafe {
let input = #tupled;
if let Some(index) = rtic::export::interrupt::free(|_| #app_path::#fq.dequeue()) {
@ -314,15 +398,21 @@ pub fn codegen(
.as_mut_ptr()
.write(instant);
rtic::export::interrupt::free(|_| {
let marker = #tq_marker;
let nr = rtic::export::NotReady {
instant,
index,
task: #app_path::#t::#name,
marker,
};
rtic::export::interrupt::free(|_|
#tq_marker = #tq_marker.wrapping_add(1);
let tq = unsafe { &mut *#app_path::#tq.as_mut_ptr() };
if let Some(mono) = #app_path::#m_ident.as_mut() {
#app_path::#tq.enqueue_unchecked(
tq.enqueue_unchecked(
nr,
|| #enable_interrupt,
|| #pend,
@ -331,9 +421,10 @@ pub fn codegen(
// We can only use the timer queue if `init` has returned, and it
// writes the `Some(monotonic)` we are accessing here.
core::hint::unreachable_unchecked()
});
}
Ok(())
Ok(SpawnHandle { marker })
})
} else {
Err(input)
}

View file

@ -77,12 +77,16 @@ pub fn codegen(app: &App, analysis: &Analysis, extra: &Extra) -> Vec<TokenStream
);));
}
// Initialize monotonic's interrupts
for (_, monotonic) in app.monotonics.iter()
//.map(|(ident, monotonic)| (ident, &monotonic.args.priority, &monotonic.args.binds))
{
// Initialize monotonic's interrupts and timer queues
for (_, monotonic) in &app.monotonics {
let priority = &monotonic.args.priority;
let binds = &monotonic.args.binds;
let monotonic_name = monotonic.ident.to_string();
let tq = util::tq_ident(&monotonic_name);
let tq = util::mark_internal_ident(&tq);
// Initialize timer queues
stmts.push(quote!(#tq.as_mut_ptr().write(rtic::export::TimerQueue::new());));
// Compile time assert that this priority is supported by the device
stmts.push(quote!(let _ = [(); ((1 << #nvic_prio_bits) - #priority as usize)];));

View file

@ -9,6 +9,15 @@ pub fn codegen(app: &App, analysis: &Analysis, _extra: &Extra) -> Vec<TokenStrea
let mut items = vec![];
if !app.monotonics.is_empty() {
// Generate the marker counter used to track for `cancel` and `reschedule`
let tq_marker = util::mark_internal_ident(&util::timer_queue_marker_ident());
items.push(quote!(
// #[doc = #doc]
#[doc(hidden)]
#[allow(non_camel_case_types)]
static mut #tq_marker: u32 = 0;
));
let t = util::schedule_t_ident();
// Enumeration of `schedule`-able tasks
@ -32,7 +41,7 @@ pub fn codegen(app: &App, analysis: &Analysis, _extra: &Extra) -> Vec<TokenStrea
#[doc(hidden)]
#[allow(non_camel_case_types)]
#[derive(Clone, Copy)]
enum #t {
pub enum #t {
#(#variants,)*
}
));
@ -59,15 +68,12 @@ pub fn codegen(app: &App, analysis: &Analysis, _extra: &Extra) -> Vec<TokenStrea
.map(|(_name, task)| task.args.capacity)
.sum();
let n = util::capacity_typenum(cap, false);
let tq_ty = quote!(rtic::export::TimerQueue<#mono_type, #t, #n>);
let tq_ty =
quote!(core::mem::MaybeUninit<rtic::export::TimerQueue<#mono_type, #t, #n>>);
items.push(quote!(
#[doc(hidden)]
static mut #tq: #tq_ty = rtic::export::TimerQueue(
rtic::export::BinaryHeap(
rtic::export::iBinaryHeap::new()
)
);
static mut #tq: #tq_ty = core::mem::MaybeUninit::uninit();
));
let mono = util::monotonic_ident(&monotonic_name);
@ -129,7 +135,7 @@ pub fn codegen(app: &App, analysis: &Analysis, _extra: &Extra) -> Vec<TokenStrea
while let Some((task, index)) = rtic::export::interrupt::free(|_|
if let Some(mono) = #app_path::#m_ident.as_mut() {
#tq.dequeue(|| #disable_isr, mono)
(&mut *#tq.as_mut_ptr()).dequeue(|| #disable_isr, mono)
} else {
// We can only use the timer queue if `init` has returned, and it
// writes the `Some(monotonic)` we are accessing here.

View file

@ -89,6 +89,11 @@ pub fn interrupt_ident() -> Ident {
Ident::new("interrupt", span)
}
pub fn timer_queue_marker_ident() -> Ident {
let span = Span::call_site();
Ident::new("TIMER_QUEUE_MARKER", span)
}
/// Whether `name` is an exception with configurable priority
pub fn is_exception(name: &Ident) -> bool {
let s = name.to_string();

View file

@ -1,221 +0,0 @@
//! Data Watchpoint Trace (DWT) unit's CYCle CouNTer (CYCCNT)
use core::{
cmp::Ordering,
convert::{Infallible, TryInto},
fmt, ops,
};
use cortex_m::peripheral::DWT;
use crate::Fraction;
/// A measurement of the CYCCNT. Opaque and useful only with `Duration`
///
/// This data type is only available on ARMv7-M
///
/// # Correctness
///
/// Adding or subtracting a `Duration` of more than `(1 << 31)` cycles to an `Instant` effectively
/// makes it "wrap around" and creates an incorrect value. This is also true if the operation is
/// done in steps, e.g. `(instant + dur) + dur` where `dur` is `(1 << 30)` ticks.
#[derive(Clone, Copy, Eq, PartialEq)]
pub struct Instant {
inner: i32,
}
impl Instant {
/// Returns an instant corresponding to "now"
///
/// *HEADS UP* this function can, and will, return nonsensical values if called within `init`.
/// Only use it in `idle` and tasks. In `init`, use the `init::Context.start` field, or the
/// `CYCCNT::zero` function, instead of this function
pub fn now() -> Self {
Instant {
inner: DWT::get_cycle_count() as i32,
}
}
/// Returns the amount of time elapsed since this instant was created.
pub fn elapsed(&self) -> Duration {
let diff = Instant::now().inner.wrapping_sub(self.inner);
assert!(diff >= 0, "instant now is earlier than self");
Duration { inner: diff as u32 }
}
/// Returns the amount of time elapsed from another instant to this one.
pub fn duration_since(&self, earlier: Instant) -> Duration {
let diff = self.inner.wrapping_sub(earlier.inner);
assert!(diff >= 0, "second instant is later than self");
Duration { inner: diff as u32 }
}
}
impl fmt::Debug for Instant {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("Instant")
.field(&(self.inner as u32))
.finish()
}
}
impl ops::AddAssign<Duration> for Instant {
fn add_assign(&mut self, dur: Duration) {
// NOTE this is a debug assertion because there's no foolproof way to detect a wrap around;
// the user may write `(instant + dur) + dur` where `dur` is `(1<<31)-1` ticks.
debug_assert!(dur.inner < (1 << 31));
self.inner = self.inner.wrapping_add(dur.inner as i32);
}
}
impl ops::Add<Duration> for Instant {
type Output = Self;
fn add(mut self, dur: Duration) -> Self {
self += dur;
self
}
}
impl ops::SubAssign<Duration> for Instant {
fn sub_assign(&mut self, dur: Duration) {
// NOTE see the NOTE in `<Instant as AddAssign<Duration>>::add_assign`
debug_assert!(dur.inner < (1 << 31));
self.inner = self.inner.wrapping_sub(dur.inner as i32);
}
}
impl ops::Sub<Duration> for Instant {
type Output = Self;
fn sub(mut self, dur: Duration) -> Self {
self -= dur;
self
}
}
impl ops::Sub<Instant> for Instant {
type Output = Duration;
fn sub(self, other: Instant) -> Duration {
self.duration_since(other)
}
}
impl Ord for Instant {
fn cmp(&self, rhs: &Self) -> Ordering {
self.inner.wrapping_sub(rhs.inner).cmp(&0)
}
}
impl PartialOrd for Instant {
fn partial_cmp(&self, rhs: &Self) -> Option<Ordering> {
Some(self.cmp(rhs))
}
}
/// A `Duration` type to represent a span of time.
///
/// This data type is only available on ARMv7-M
///
/// # Correctness
///
/// This type is *not* appropriate for representing time spans in the order of, or larger than,
/// seconds because it can hold a maximum of `(1 << 31)` "ticks" where each tick is the inverse of
/// the CPU frequency, which usually is dozens of MHz.
#[derive(Clone, Copy, Default, Eq, Ord, PartialEq, PartialOrd)]
pub struct Duration {
inner: u32,
}
impl Duration {
/// Creates a new `Duration` from the specified number of clock cycles
pub fn from_cycles(cycles: u32) -> Self {
Duration { inner: cycles }
}
/// Returns the total number of clock cycles contained by this `Duration`
pub fn as_cycles(&self) -> u32 {
self.inner
}
}
impl TryInto<u32> for Duration {
type Error = Infallible;
fn try_into(self) -> Result<u32, Infallible> {
Ok(self.as_cycles())
}
}
impl ops::AddAssign for Duration {
fn add_assign(&mut self, dur: Duration) {
self.inner += dur.inner;
}
}
impl ops::Add<Duration> for Duration {
type Output = Self;
fn add(self, other: Self) -> Self {
Duration {
inner: self.inner + other.inner,
}
}
}
impl ops::SubAssign for Duration {
fn sub_assign(&mut self, rhs: Duration) {
self.inner -= rhs.inner;
}
}
impl ops::Sub<Duration> for Duration {
type Output = Self;
fn sub(self, rhs: Self) -> Self {
Duration {
inner: self.inner - rhs.inner,
}
}
}
/// Adds the `cycles` method to the `u32` type
///
/// This trait is only available on ARMv7-M
pub trait U32Ext {
/// Converts the `u32` value into clock cycles
fn cycles(self) -> Duration;
}
impl U32Ext for u32 {
fn cycles(self) -> Duration {
Duration { inner: self }
}
}
/// Implementation of the `Monotonic` trait based on CYCle CouNTer
pub struct CYCCNT;
impl crate::Monotonic for CYCCNT {
type Instant = Instant;
fn ratio() -> Fraction {
Fraction {
numerator: 1,
denominator: 1,
}
}
unsafe fn reset() {
(0xE0001004 as *mut u32).write_volatile(0)
}
fn now() -> Instant {
Instant::now()
}
fn zero() -> Instant {
Instant { inner: 0 }
}
}

View file

@ -43,6 +43,8 @@ pub use rtic_monotonic::{self, embedded_time as time, Monotonic};
#[doc(hidden)]
pub mod export;
#[doc(hidden)]
mod linked_list;
#[doc(hidden)]
mod tq;
/// Sets the given `interrupt` as pending

599
src/linked_list.rs Normal file
View file

@ -0,0 +1,599 @@
use core::fmt;
use core::marker::PhantomData;
use core::mem::MaybeUninit;
use core::ops::{Deref, DerefMut};
use core::ptr;
pub use generic_array::ArrayLength;
use generic_array::GenericArray;
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
struct LinkedIndex(u16);
impl LinkedIndex {
#[inline]
const unsafe fn new_unchecked(value: u16) -> Self {
LinkedIndex(value)
}
#[inline]
const fn none() -> Self {
LinkedIndex(u16::MAX)
}
#[inline]
const fn option(self) -> Option<u16> {
if self.0 == u16::MAX {
None
} else {
Some(self.0)
}
}
}
/// A node in the linked list.
pub struct Node<T> {
val: MaybeUninit<T>,
next: LinkedIndex,
}
/// Iterator for the linked list.
pub struct Iter<'a, T, Kind, N>
where
T: PartialEq + PartialOrd,
Kind: kind::Kind,
N: ArrayLength<Node<T>>,
{
list: &'a LinkedList<T, Kind, N>,
index: LinkedIndex,
}
impl<'a, T, Kind, N> Iterator for Iter<'a, T, Kind, N>
where
T: PartialEq + PartialOrd,
Kind: kind::Kind,
N: ArrayLength<Node<T>>,
{
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
let index = self.index.option()?;
let node = self.list.node_at(index as usize);
self.index = node.next;
Some(self.list.read_data_in_node_at(index as usize))
}
}
/// Comes from [`LinkedList::find_mut`].
pub struct FindMut<'a, T, Kind, N>
where
T: PartialEq + PartialOrd,
Kind: kind::Kind,
N: ArrayLength<Node<T>>,
{
list: &'a mut LinkedList<T, Kind, N>,
is_head: bool,
prev_index: LinkedIndex,
index: LinkedIndex,
maybe_changed: bool,
}
impl<'a, T, Kind, N> FindMut<'a, T, Kind, N>
where
T: PartialEq + PartialOrd,
Kind: kind::Kind,
N: ArrayLength<Node<T>>,
{
fn pop_internal(&mut self) -> T {
if self.is_head {
// If it is the head element, we can do a normal pop
unsafe { self.list.pop_unchecked() }
} else {
// Somewhere in the list
// Re-point the previous index
self.list.node_at_mut(self.prev_index.0 as usize).next =
self.list.node_at_mut(self.index.0 as usize).next;
// Release the index into the free queue
self.list.node_at_mut(self.index.0 as usize).next = self.list.free;
self.list.free = self.index;
self.list.extract_data_in_node_at(self.index.0 as usize)
}
}
/// This will pop the element from the list.
///
/// Complexity is O(1).
#[inline]
pub fn pop(mut self) -> T {
self.pop_internal()
}
/// This will resort the element into the correct position in the list in needed.
/// Same as calling `drop`.
///
/// Complexity is worst-case O(N).
#[inline]
pub fn finish(self) {
drop(self)
}
}
impl<T, Kind, N> Drop for FindMut<'_, T, Kind, N>
where
T: PartialEq + PartialOrd,
Kind: kind::Kind,
N: ArrayLength<Node<T>>,
{
fn drop(&mut self) {
// Only resort the list if the element has changed
if self.maybe_changed {
let val = self.pop_internal();
unsafe { self.list.push_unchecked(val) };
}
}
}
impl<T, Kind, N> Deref for FindMut<'_, T, Kind, N>
where
T: PartialEq + PartialOrd,
Kind: kind::Kind,
N: ArrayLength<Node<T>>,
{
type Target = T;
fn deref(&self) -> &Self::Target {
self.list.read_data_in_node_at(self.index.0 as usize)
}
}
impl<T, Kind, N> DerefMut for FindMut<'_, T, Kind, N>
where
T: PartialEq + PartialOrd,
Kind: kind::Kind,
N: ArrayLength<Node<T>>,
{
fn deref_mut(&mut self) -> &mut Self::Target {
self.maybe_changed = true;
self.list.read_mut_data_in_node_at(self.index.0 as usize)
}
}
impl<T, Kind, N> fmt::Debug for FindMut<'_, T, Kind, N>
where
T: PartialEq + PartialOrd + core::fmt::Debug,
Kind: kind::Kind,
N: ArrayLength<Node<T>>,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("FindMut")
.field("prev_index", &self.prev_index)
.field("index", &self.index)
.field(
"prev_value",
&self
.list
.read_data_in_node_at(self.prev_index.option().unwrap() as usize),
)
.field(
"value",
&self
.list
.read_data_in_node_at(self.index.option().unwrap() as usize),
)
.finish()
}
}
/// The linked list.
pub struct LinkedList<T, Kind, N>
where
T: PartialEq + PartialOrd,
Kind: kind::Kind,
N: ArrayLength<Node<T>>,
{
list: MaybeUninit<GenericArray<Node<T>, N>>,
head: LinkedIndex,
free: LinkedIndex,
_kind: PhantomData<Kind>,
}
impl<T, Kind, N> LinkedList<T, Kind, N>
where
T: PartialEq + PartialOrd,
Kind: kind::Kind,
N: ArrayLength<Node<T>>,
{
/// Internal helper to not do pointer arithmetic all over the place.
#[inline]
fn node_at(&self, index: usize) -> &Node<T> {
// Safety: The entire `self.list` is initialized in `new`, which makes this safe.
unsafe { &*(self.list.as_ptr() as *const Node<T>).add(index) }
}
/// Internal helper to not do pointer arithmetic all over the place.
#[inline]
fn node_at_mut(&mut self, index: usize) -> &mut Node<T> {
// Safety: The entire `self.list` is initialized in `new`, which makes this safe.
unsafe { &mut *(self.list.as_mut_ptr() as *mut Node<T>).add(index) }
}
/// Internal helper to not do pointer arithmetic all over the place.
#[inline]
fn write_data_in_node_at(&mut self, index: usize, data: T) {
unsafe {
self.node_at_mut(index).val.as_mut_ptr().write(data);
}
}
/// Internal helper to not do pointer arithmetic all over the place.
#[inline]
fn read_data_in_node_at(&self, index: usize) -> &T {
unsafe { &*self.node_at(index).val.as_ptr() }
}
/// Internal helper to not do pointer arithmetic all over the place.
#[inline]
fn read_mut_data_in_node_at(&mut self, index: usize) -> &mut T {
unsafe { &mut *self.node_at_mut(index).val.as_mut_ptr() }
}
/// Internal helper to not do pointer arithmetic all over the place.
#[inline]
fn extract_data_in_node_at(&mut self, index: usize) -> T {
unsafe { self.node_at(index).val.as_ptr().read() }
}
/// Internal helper to not do pointer arithmetic all over the place.
/// Safety: This can overwrite existing allocated nodes if used improperly, meaning their
/// `Drop` methods won't run.
#[inline]
unsafe fn write_node_at(&mut self, index: usize, node: Node<T>) {
(self.list.as_mut_ptr() as *mut Node<T>)
.add(index)
.write(node)
}
/// Create a new linked list.
pub fn new() -> Self {
let mut list = LinkedList {
list: MaybeUninit::uninit(),
head: LinkedIndex::none(),
free: unsafe { LinkedIndex::new_unchecked(0) },
_kind: PhantomData,
};
let len = N::U16;
let mut free = 0;
// Initialize indexes
while free < len - 1 {
unsafe {
list.write_node_at(
free as usize,
Node {
val: MaybeUninit::uninit(),
next: LinkedIndex::new_unchecked(free + 1),
},
);
}
free += 1;
}
// Initialize final index
unsafe {
list.write_node_at(
free as usize,
Node {
val: MaybeUninit::uninit(),
next: LinkedIndex::none(),
},
);
}
list
}
/// Push unchecked
///
/// Complexity is O(N).
///
/// # Safety
///
/// Assumes that the list is not full.
pub unsafe fn push_unchecked(&mut self, value: T) {
let new = self.free.0;
// Store the data and update the next free spot
self.write_data_in_node_at(new as usize, value);
self.free = self.node_at(new as usize).next;
if let Some(head) = self.head.option() {
// Check if we need to replace head
if self
.read_data_in_node_at(head as usize)
.partial_cmp(self.read_data_in_node_at(new as usize))
!= Kind::ordering()
{
self.node_at_mut(new as usize).next = self.head;
self.head = LinkedIndex::new_unchecked(new);
} else {
// It's not head, search the list for the correct placement
let mut current = head;
while let Some(next) = self.node_at(current as usize).next.option() {
if self
.read_data_in_node_at(next as usize)
.partial_cmp(self.read_data_in_node_at(new as usize))
!= Kind::ordering()
{
break;
}
current = next;
}
self.node_at_mut(new as usize).next = self.node_at(current as usize).next;
self.node_at_mut(current as usize).next = LinkedIndex::new_unchecked(new);
}
} else {
self.node_at_mut(new as usize).next = self.head;
self.head = LinkedIndex::new_unchecked(new);
}
}
/// Pushes an element to the linked list and sorts it into place.
///
/// Complexity is O(N).
pub fn push(&mut self, value: T) -> Result<(), T> {
if !self.is_full() {
Ok(unsafe { self.push_unchecked(value) })
} else {
Err(value)
}
}
/// Get an iterator over the sorted list.
pub fn iter(&self) -> Iter<'_, T, Kind, N> {
Iter {
list: self,
index: self.head,
}
}
/// Find an element in the list.
pub fn find_mut<F>(&mut self, mut f: F) -> Option<FindMut<'_, T, Kind, N>>
where
F: FnMut(&T) -> bool,
{
let head = self.head.option()?;
// Special-case, first element
if f(self.read_data_in_node_at(head as usize)) {
return Some(FindMut {
is_head: true,
prev_index: LinkedIndex::none(),
index: self.head,
list: self,
maybe_changed: false,
});
}
let mut current = head;
while let Some(next) = self.node_at(current as usize).next.option() {
if f(self.read_data_in_node_at(next as usize)) {
return Some(FindMut {
is_head: false,
prev_index: unsafe { LinkedIndex::new_unchecked(current) },
index: unsafe { LinkedIndex::new_unchecked(next) },
list: self,
maybe_changed: false,
});
}
current = next;
}
None
}
/// Peek at the first element.
pub fn peek(&self) -> Option<&T> {
self.head
.option()
.map(|head| self.read_data_in_node_at(head as usize))
}
/// Pop unchecked
///
/// # Safety
///
/// Assumes that the list is not empty.
pub unsafe fn pop_unchecked(&mut self) -> T {
let head = self.head.0;
let current = head;
self.head = self.node_at(head as usize).next;
self.node_at_mut(current as usize).next = self.free;
self.free = LinkedIndex::new_unchecked(current);
self.extract_data_in_node_at(current as usize)
}
/// Pops the first element in the list.
///
/// Complexity is O(1).
pub fn pop(&mut self) -> Result<T, ()> {
if !self.is_empty() {
Ok(unsafe { self.pop_unchecked() })
} else {
Err(())
}
}
/// Checks if the linked list is full.
#[inline]
pub fn is_full(&self) -> bool {
self.free.option().is_none()
}
/// Checks if the linked list is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.head.option().is_none()
}
}
impl<T, Kind, N> Drop for LinkedList<T, Kind, N>
where
T: PartialEq + PartialOrd,
Kind: kind::Kind,
N: ArrayLength<Node<T>>,
{
fn drop(&mut self) {
let mut index = self.head;
while let Some(i) = index.option() {
let node = self.node_at_mut(i as usize);
index = node.next;
unsafe {
ptr::drop_in_place(node.val.as_mut_ptr());
}
}
}
}
impl<T, Kind, N> fmt::Debug for LinkedList<T, Kind, N>
where
T: PartialEq + PartialOrd + core::fmt::Debug,
Kind: kind::Kind,
N: ArrayLength<Node<T>>,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.iter()).finish()
}
}
/// Min sorted linked list.
pub struct Min;
/// Max sorted linked list.
pub struct Max;
/// Sealed traits and implementations for `linked_list`
pub mod kind {
use super::{Max, Min};
use core::cmp::Ordering;
/// The linked list kind: min first or max first
pub unsafe trait Kind {
#[doc(hidden)]
fn ordering() -> Option<Ordering>;
}
unsafe impl Kind for Min {
#[inline]
fn ordering() -> Option<Ordering> {
Some(Ordering::Less)
}
}
unsafe impl Kind for Max {
#[inline]
fn ordering() -> Option<Ordering> {
Some(Ordering::Greater)
}
}
}
#[cfg(test)]
mod tests {
// Note this useful idiom: importing names from outer (for mod tests) scope.
use super::*;
use generic_array::typenum::consts::*;
#[test]
fn test_peek() {
let mut ll: LinkedList<u32, Max, U3> = LinkedList::new();
ll.push(1).unwrap();
assert_eq!(ll.peek().unwrap(), &1);
ll.push(2).unwrap();
assert_eq!(ll.peek().unwrap(), &2);
ll.push(3).unwrap();
assert_eq!(ll.peek().unwrap(), &3);
let mut ll: LinkedList<u32, Min, U3> = LinkedList::new();
ll.push(2).unwrap();
assert_eq!(ll.peek().unwrap(), &2);
ll.push(1).unwrap();
assert_eq!(ll.peek().unwrap(), &1);
ll.push(3).unwrap();
assert_eq!(ll.peek().unwrap(), &1);
}
#[test]
fn test_full() {
let mut ll: LinkedList<u32, Max, U3> = LinkedList::new();
ll.push(1).unwrap();
ll.push(2).unwrap();
ll.push(3).unwrap();
assert!(ll.is_full())
}
#[test]
fn test_empty() {
let ll: LinkedList<u32, Max, U3> = LinkedList::new();
assert!(ll.is_empty())
}
#[test]
fn test_rejected_push() {
let mut ll: LinkedList<u32, Max, U3> = LinkedList::new();
ll.push(1).unwrap();
ll.push(2).unwrap();
ll.push(3).unwrap();
// This won't fit
let r = ll.push(4);
assert_eq!(r, Err(4));
}
#[test]
fn test_updating() {
let mut ll: LinkedList<u32, Max, U3> = LinkedList::new();
ll.push(1).unwrap();
ll.push(2).unwrap();
ll.push(3).unwrap();
let mut find = ll.find_mut(|v| *v == 2).unwrap();
*find += 1000;
find.finish();
assert_eq!(ll.peek().unwrap(), &1002);
let mut find = ll.find_mut(|v| *v == 3).unwrap();
*find += 1000;
find.finish();
assert_eq!(ll.peek().unwrap(), &1003);
// Remove largest element
ll.find_mut(|v| *v == 1003).unwrap().pop();
assert_eq!(ll.peek().unwrap(), &1002);
}
}

View file

@ -1,22 +1,35 @@
use crate::{
linked_list::{ArrayLength, LinkedList, Min, Node},
time::{Clock, Instant},
Monotonic,
};
use core::cmp::Ordering;
use heapless::{binary_heap::Min, ArrayLength, BinaryHeap};
pub struct TimerQueue<Mono, Task, N>(pub BinaryHeap<NotReady<Mono, Task>, N, Min>)
#[inline(always)]
fn unwrapper<T, E>(val: Result<T, E>) -> T {
if let Ok(v) = val {
v
} else {
unreachable!("Your monotonic is not infallible")
}
}
pub struct TimerQueue<Mono, Task, N>(pub LinkedList<NotReady<Mono, Task>, Min, N>)
where
Mono: Monotonic,
N: ArrayLength<NotReady<Mono, Task>>,
N: ArrayLength<Node<NotReady<Mono, Task>>>,
Task: Copy;
impl<Mono, Task, N> TimerQueue<Mono, Task, N>
where
Mono: Monotonic,
N: ArrayLength<NotReady<Mono, Task>>,
N: ArrayLength<Node<NotReady<Mono, Task>>>,
Task: Copy,
{
pub fn new() -> Self {
TimerQueue(LinkedList::new())
}
/// # Safety
///
/// Writing to memory with a transmute in order to enable
@ -34,26 +47,20 @@ where
F1: FnOnce(),
F2: FnOnce(),
{
let mut is_empty = true;
// Check if the top contains a non-empty element and if that element is
// greater than nr
let if_heap_max_greater_than_nr = self
.0
.peek()
.map(|head| {
is_empty = false;
nr.instant < head.instant
})
.map(|head| nr.instant < head.instant)
.unwrap_or(true);
if if_heap_max_greater_than_nr {
if Mono::DISABLE_INTERRUPT_ON_EMPTY_QUEUE && is_empty {
// mem::transmute::<_, SYST>(()).enable_interrupt();A
if Mono::DISABLE_INTERRUPT_ON_EMPTY_QUEUE && self.0.is_empty() {
mono.enable_timer();
enable_interrupt();
}
// Set SysTick pending
// SCB::set_pendst();
pend_handler();
}
@ -66,17 +73,39 @@ where
self.0.is_empty()
}
#[inline]
fn unwrapper<T, E>(val: Result<T, E>) -> T {
if let Ok(v) = val {
v
/// Cancel the marker value
pub fn cancel_marker(&mut self, marker: u32) -> Option<(Task, u8)> {
if let Some(val) = self.0.find_mut(|nr| nr.marker == marker) {
let nr = val.pop();
Some((nr.task, nr.index))
} else {
unreachable!("Your monotonic is not infallible")
None
}
}
/// Update the instant at an marker value to a new instant
pub fn update_marker<F: FnOnce()>(
&mut self,
marker: u32,
new_marker: u32,
instant: Instant<Mono>,
pend_handler: F,
) -> Result<(), ()> {
if let Some(mut val) = self.0.find_mut(|nr| nr.marker == marker) {
val.instant = instant;
val.marker = new_marker;
// On update pend the handler to reconfigure the next compare match
pend_handler();
Ok(())
} else {
Err(())
}
}
/// Dequeue a task from the TimerQueue
#[inline]
pub fn dequeue<F>(&mut self, disable_interrupt: F, mono: &mut Mono) -> Option<(Task, u8)>
where
F: FnOnce(),
@ -84,7 +113,7 @@ where
mono.clear_compare_flag();
if let Some(instant) = self.0.peek().map(|p| p.instant) {
if instant <= Self::unwrapper(Clock::try_now(mono)) {
if instant <= unwrapper(Clock::try_now(mono)) {
// task became ready
let nr = unsafe { self.0.pop_unchecked() };
@ -97,7 +126,7 @@ where
// dequeue. If the monotonic is fast enough it can happen that from the
// read of now to the set of the compare, the time can overflow. This is to
// guard against this.
if instant <= Self::unwrapper(Clock::try_now(mono)) {
if instant <= unwrapper(Clock::try_now(mono)) {
let nr = unsafe { self.0.pop_unchecked() };
Some((nr.task, nr.index))
@ -125,6 +154,7 @@ where
pub index: u8,
pub instant: Instant<Mono>,
pub task: Task,
pub marker: u32,
}
impl<Mono, Task> Eq for NotReady<Mono, Task>