More removal

This commit is contained in:
Emil Fresk 2023-01-04 21:36:43 +01:00 committed by Henrik Tjäder
parent 3b97531a5c
commit 53f3d397e7
4 changed files with 0 additions and 758 deletions

View file

@ -1,8 +1,3 @@
#![allow(clippy::inline_always)]
pub use crate::{
sll::{IntrusiveSortedLinkedList, Node as IntrusiveNode},
tq::{TaskNotReady, TimerQueue, WakerNotReady},
};
pub use bare_metal::CriticalSection;
use core::{
cell::Cell,

View file

@ -51,10 +51,6 @@ pub mod mutex {
#[doc(hidden)]
pub mod export;
#[doc(hidden)]
pub mod sll;
#[doc(hidden)]
mod tq;
/// Sets the given `interrupt` as pending
///

View file

@ -1,421 +0,0 @@
//! An intrusive sorted priority linked list, designed for use in `Future`s in RTIC.
use core::cmp::Ordering;
use core::fmt;
use core::marker::PhantomData;
use core::ops::{Deref, DerefMut};
use core::ptr::NonNull;
/// Marker for Min sorted [`IntrusiveSortedLinkedList`].
pub struct Min;
/// Marker for Max sorted [`IntrusiveSortedLinkedList`].
pub struct Max;
/// The linked list kind: min-list or max-list
pub trait Kind: private::Sealed {
#[doc(hidden)]
fn ordering() -> Ordering;
}
impl Kind for Min {
fn ordering() -> Ordering {
Ordering::Less
}
}
impl Kind for Max {
fn ordering() -> Ordering {
Ordering::Greater
}
}
/// Sealed traits
mod private {
pub trait Sealed {}
}
impl private::Sealed for Max {}
impl private::Sealed for Min {}
/// A node in the [`IntrusiveSortedLinkedList`].
pub struct Node<T> {
pub val: T,
next: Option<NonNull<Node<T>>>,
}
impl<T> Node<T> {
pub fn new(val: T) -> Self {
Self { val, next: None }
}
}
/// The linked list.
pub struct IntrusiveSortedLinkedList<'a, T, K> {
head: Option<NonNull<Node<T>>>,
_kind: PhantomData<K>,
_lt: PhantomData<&'a ()>,
}
impl<'a, T, K> fmt::Debug for IntrusiveSortedLinkedList<'a, T, K>
where
T: Ord + core::fmt::Debug,
K: Kind,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut l = f.debug_list();
let mut current = self.head;
while let Some(head) = current {
let head = unsafe { head.as_ref() };
current = head.next;
l.entry(&head.val);
}
l.finish()
}
}
impl<'a, T, K> IntrusiveSortedLinkedList<'a, T, K>
where
T: Ord,
K: Kind,
{
pub const fn new() -> Self {
Self {
head: None,
_kind: PhantomData,
_lt: PhantomData,
}
}
// Push to the list.
pub fn push(&mut self, new: &'a mut Node<T>) {
unsafe {
if let Some(head) = self.head {
if head.as_ref().val.cmp(&new.val) != K::ordering() {
// This is newer than head, replace head
new.next = self.head;
self.head = Some(NonNull::new_unchecked(new));
} else {
// It's not head, search the list for the correct placement
let mut current = head;
while let Some(next) = current.as_ref().next {
if next.as_ref().val.cmp(&new.val) != K::ordering() {
break;
}
current = next;
}
new.next = current.as_ref().next;
current.as_mut().next = Some(NonNull::new_unchecked(new));
}
} else {
// List is empty, place at head
self.head = Some(NonNull::new_unchecked(new))
}
}
}
/// Get an iterator over the sorted list.
pub fn iter(&self) -> Iter<'_, T, K> {
Iter {
_list: self,
index: self.head,
}
}
/// Find an element in the list that can be changed and resorted.
pub fn find_mut<F>(&mut self, mut f: F) -> Option<FindMut<'_, 'a, T, K>>
where
F: FnMut(&T) -> bool,
{
let head = self.head?;
// Special-case, first element
if f(&unsafe { head.as_ref() }.val) {
return Some(FindMut {
is_head: true,
prev_index: None,
index: self.head,
list: self,
maybe_changed: false,
});
}
let mut current = head;
while let Some(next) = unsafe { current.as_ref() }.next {
if f(&unsafe { next.as_ref() }.val) {
return Some(FindMut {
is_head: false,
prev_index: Some(current),
index: Some(next),
list: self,
maybe_changed: false,
});
}
current = next;
}
None
}
/// Peek at the first element.
pub fn peek(&self) -> Option<&T> {
self.head.map(|head| unsafe { &head.as_ref().val })
}
/// Pops the first element in the list.
///
/// Complexity is worst-case `O(1)`.
pub fn pop(&mut self) -> Option<&'a Node<T>> {
if let Some(head) = self.head {
let v = unsafe { head.as_ref() };
self.head = v.next;
Some(v)
} else {
None
}
}
/// Checks if the linked list is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.head.is_none()
}
}
/// Iterator for the linked list.
pub struct Iter<'a, T, K>
where
T: Ord,
K: Kind,
{
_list: &'a IntrusiveSortedLinkedList<'a, T, K>,
index: Option<NonNull<Node<T>>>,
}
impl<'a, T, K> Iterator for Iter<'a, T, K>
where
T: Ord,
K: Kind,
{
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
let index = self.index?;
let node = unsafe { index.as_ref() };
self.index = node.next;
Some(&node.val)
}
}
/// Comes from [`IntrusiveSortedLinkedList::find_mut`].
pub struct FindMut<'a, 'b, T, K>
where
T: Ord + 'b,
K: Kind,
{
list: &'a mut IntrusiveSortedLinkedList<'b, T, K>,
is_head: bool,
prev_index: Option<NonNull<Node<T>>>,
index: Option<NonNull<Node<T>>>,
maybe_changed: bool,
}
impl<'a, 'b, T, K> FindMut<'a, 'b, T, K>
where
T: Ord,
K: Kind,
{
unsafe fn pop_internal(&mut self) -> &'b mut Node<T> {
if self.is_head {
// If it is the head element, we can do a normal pop
let mut head = self.list.head.unwrap_unchecked();
let v = head.as_mut();
self.list.head = v.next;
v
} else {
// Somewhere in the list
let mut prev = self.prev_index.unwrap_unchecked();
let mut curr = self.index.unwrap_unchecked();
// Re-point the previous index
prev.as_mut().next = curr.as_ref().next;
curr.as_mut()
}
}
/// This will pop the element from the list.
///
/// Complexity is worst-case `O(1)`.
#[inline]
pub fn pop(mut self) -> &'b mut Node<T> {
unsafe { self.pop_internal() }
}
/// This will resort the element into the correct position in the list if needed. The resorting
/// will only happen if the element has been accessed mutably.
///
/// Same as calling `drop`.
///
/// Complexity is worst-case `O(N)`.
#[inline]
pub fn finish(self) {
drop(self)
}
}
impl<'b, T, K> Drop for FindMut<'_, 'b, T, K>
where
T: Ord + 'b,
K: Kind,
{
fn drop(&mut self) {
// Only resort the list if the element has changed
if self.maybe_changed {
unsafe {
let val = self.pop_internal();
self.list.push(val);
}
}
}
}
impl<T, K> Deref for FindMut<'_, '_, T, K>
where
T: Ord,
K: Kind,
{
type Target = T;
fn deref(&self) -> &Self::Target {
unsafe { &self.index.unwrap_unchecked().as_ref().val }
}
}
impl<T, K> DerefMut for FindMut<'_, '_, T, K>
where
T: Ord,
K: Kind,
{
fn deref_mut(&mut self) -> &mut Self::Target {
self.maybe_changed = true;
unsafe { &mut self.index.unwrap_unchecked().as_mut().val }
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn const_new() {
static mut _V1: IntrusiveSortedLinkedList<u32, Max> = IntrusiveSortedLinkedList::new();
}
#[test]
fn test_peek() {
let mut ll: IntrusiveSortedLinkedList<u32, Max> = IntrusiveSortedLinkedList::new();
let mut a = Node { val: 1, next: None };
ll.push(&mut a);
assert_eq!(ll.peek().unwrap(), &1);
let mut a = Node { val: 2, next: None };
ll.push(&mut a);
assert_eq!(ll.peek().unwrap(), &2);
let mut a = Node { val: 3, next: None };
ll.push(&mut a);
assert_eq!(ll.peek().unwrap(), &3);
let mut ll: IntrusiveSortedLinkedList<u32, Min> = IntrusiveSortedLinkedList::new();
let mut a = Node { val: 2, next: None };
ll.push(&mut a);
assert_eq!(ll.peek().unwrap(), &2);
let mut a = Node { val: 1, next: None };
ll.push(&mut a);
assert_eq!(ll.peek().unwrap(), &1);
let mut a = Node { val: 3, next: None };
ll.push(&mut a);
assert_eq!(ll.peek().unwrap(), &1);
}
#[test]
fn test_empty() {
let ll: IntrusiveSortedLinkedList<u32, Max> = IntrusiveSortedLinkedList::new();
assert!(ll.is_empty())
}
#[test]
fn test_updating() {
let mut ll: IntrusiveSortedLinkedList<u32, Max> = IntrusiveSortedLinkedList::new();
let mut a = Node { val: 1, next: None };
ll.push(&mut a);
let mut a = Node { val: 2, next: None };
ll.push(&mut a);
let mut a = Node { val: 3, next: None };
ll.push(&mut a);
let mut find = ll.find_mut(|v| *v == 2).unwrap();
*find += 1000;
find.finish();
assert_eq!(ll.peek().unwrap(), &1002);
let mut find = ll.find_mut(|v| *v == 3).unwrap();
*find += 1000;
find.finish();
assert_eq!(ll.peek().unwrap(), &1003);
// Remove largest element
ll.find_mut(|v| *v == 1003).unwrap().pop();
assert_eq!(ll.peek().unwrap(), &1002);
}
#[test]
fn test_updating_1() {
let mut ll: IntrusiveSortedLinkedList<u32, Max> = IntrusiveSortedLinkedList::new();
let mut a = Node { val: 1, next: None };
ll.push(&mut a);
let v = ll.pop().unwrap();
assert_eq!(v.val, 1);
}
#[test]
fn test_updating_2() {
let mut ll: IntrusiveSortedLinkedList<u32, Max> = IntrusiveSortedLinkedList::new();
let mut a = Node { val: 1, next: None };
ll.push(&mut a);
let mut find = ll.find_mut(|v| *v == 1).unwrap();
*find += 1000;
find.finish();
assert_eq!(ll.peek().unwrap(), &1001);
}
}

328
src/tq.rs
View file

@ -1,328 +0,0 @@
use crate::{
sll::{IntrusiveSortedLinkedList, Min as IsslMin, Node as IntrusiveNode},
Monotonic,
};
use core::cmp::Ordering;
use core::task::Waker;
use heapless::sorted_linked_list::{LinkedIndexU16, Min as SllMin, SortedLinkedList};
pub struct TimerQueue<'a, Mono, Task, const N_TASK: usize>
where
Mono: Monotonic,
Task: Copy,
{
pub task_queue: SortedLinkedList<TaskNotReady<Mono, Task>, LinkedIndexU16, SllMin, N_TASK>,
pub waker_queue: IntrusiveSortedLinkedList<'a, WakerNotReady<Mono>, IsslMin>,
}
impl<'a, Mono, Task, const N_TASK: usize> TimerQueue<'a, Mono, Task, N_TASK>
where
Mono: Monotonic + 'a,
Task: Copy,
{
fn check_if_enable<F1, F2>(
&self,
instant: Mono::Instant,
enable_interrupt: F1,
pend_handler: F2,
mono: Option<&mut Mono>,
) where
F1: FnOnce(),
F2: FnOnce(),
{
// Check if the top contains a non-empty element and if that element is
// greater than nr
let if_task_heap_max_greater_than_nr = self
.task_queue
.peek()
.map_or(true, |head| instant < head.instant);
let if_waker_heap_max_greater_than_nr = self
.waker_queue
.peek()
.map_or(true, |head| instant < head.instant);
if if_task_heap_max_greater_than_nr || if_waker_heap_max_greater_than_nr {
if Mono::DISABLE_INTERRUPT_ON_EMPTY_QUEUE && self.is_empty() {
if let Some(mono) = mono {
mono.enable_timer();
}
enable_interrupt();
}
pend_handler();
}
}
/// Enqueue a task without checking if it is full
#[inline]
pub unsafe fn enqueue_task_unchecked<F1, F2>(
&mut self,
nr: TaskNotReady<Mono, Task>,
enable_interrupt: F1,
pend_handler: F2,
mono: Option<&mut Mono>,
) where
F1: FnOnce(),
F2: FnOnce(),
{
self.check_if_enable(nr.instant, enable_interrupt, pend_handler, mono);
self.task_queue.push_unchecked(nr);
}
/// Enqueue a waker
#[inline]
pub fn enqueue_waker<F1, F2>(
&mut self,
nr: &'a mut IntrusiveNode<WakerNotReady<Mono>>,
enable_interrupt: F1,
pend_handler: F2,
mono: Option<&mut Mono>,
) where
F1: FnOnce(),
F2: FnOnce(),
{
self.check_if_enable(nr.val.instant, enable_interrupt, pend_handler, mono);
self.waker_queue.push(nr);
}
/// Check if all the timer queue is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.task_queue.is_empty() && self.waker_queue.is_empty()
}
/// Cancel the marker value for a task
pub fn cancel_task_marker(&mut self, marker: u32) -> Option<(Task, u8)> {
if let Some(val) = self.task_queue.find_mut(|nr| nr.marker == marker) {
let nr = val.pop();
Some((nr.task, nr.index))
} else {
None
}
}
/// Cancel the marker value for a waker
pub fn cancel_waker_marker(&mut self, marker: u32) {
if let Some(val) = self.waker_queue.find_mut(|nr| nr.marker == marker) {
let _ = val.pop();
}
}
/// Update the instant at an marker value for a task to a new instant
#[allow(clippy::result_unit_err)]
pub fn update_task_marker<F: FnOnce()>(
&mut self,
marker: u32,
new_marker: u32,
instant: Mono::Instant,
pend_handler: F,
) -> Result<(), ()> {
if let Some(mut val) = self.task_queue.find_mut(|nr| nr.marker == marker) {
val.instant = instant;
val.marker = new_marker;
// On update pend the handler to reconfigure the next compare match
pend_handler();
Ok(())
} else {
Err(())
}
}
fn dequeue_task_queue(
&mut self,
instant: Mono::Instant,
mono: &mut Mono,
) -> Option<(Task, u8)> {
if instant <= mono.now() {
// task became ready
let nr = unsafe { self.task_queue.pop_unchecked() };
Some((nr.task, nr.index))
} else {
// Set compare
mono.set_compare(instant);
// Double check that the instant we set is really in the future, else
// dequeue. If the monotonic is fast enough it can happen that from the
// read of now to the set of the compare, the time can overflow. This is to
// guard against this.
if instant <= mono.now() {
let nr = unsafe { self.task_queue.pop_unchecked() };
Some((nr.task, nr.index))
} else {
None
}
}
}
fn dequeue_waker_queue(&mut self, instant: Mono::Instant, mono: &mut Mono) -> bool {
let mut did_wake = false;
if instant <= mono.now() {
// Task became ready, wake the waker
if let Some(v) = self.waker_queue.pop() {
v.val.waker.wake_by_ref();
did_wake = true;
}
} else {
// Set compare
mono.set_compare(instant);
// Double check that the instant we set is really in the future, else
// dequeue. If the monotonic is fast enough it can happen that from the
// read of now to the set of the compare, the time can overflow. This is to
// guard against this.
if instant <= mono.now() {
if let Some(v) = self.waker_queue.pop() {
v.val.waker.wake_by_ref();
did_wake = true;
}
}
}
did_wake
}
/// Dequeue a task from the ``TimerQueue``
pub fn dequeue<F>(&mut self, disable_interrupt: F, mono: &mut Mono) -> Option<(Task, u8)>
where
F: FnOnce(),
{
mono.clear_compare_flag();
loop {
let tq = self.task_queue.peek().map(|p| p.instant);
let wq = self.waker_queue.peek().map(|p| p.instant);
let dequeue_task;
let instant;
match (tq, wq) {
(Some(tq_instant), Some(wq_instant)) => {
if tq_instant <= wq_instant {
dequeue_task = true;
instant = tq_instant;
} else {
dequeue_task = false;
instant = wq_instant;
}
}
(Some(tq_instant), None) => {
dequeue_task = true;
instant = tq_instant;
}
(None, Some(wq_instant)) => {
dequeue_task = false;
instant = wq_instant;
}
(None, None) => {
// The queue is empty, disable the interrupt.
if Mono::DISABLE_INTERRUPT_ON_EMPTY_QUEUE {
disable_interrupt();
mono.disable_timer();
}
return None;
}
}
if dequeue_task {
return self.dequeue_task_queue(instant, mono);
} else if !self.dequeue_waker_queue(instant, mono) {
return None;
} else {
// Run the dequeue again
}
}
}
}
pub struct TaskNotReady<Mono, Task>
where
Task: Copy,
Mono: Monotonic,
{
pub task: Task,
pub index: u8,
pub instant: Mono::Instant,
pub marker: u32,
}
impl<Mono, Task> Eq for TaskNotReady<Mono, Task>
where
Task: Copy,
Mono: Monotonic,
{
}
impl<Mono, Task> Ord for TaskNotReady<Mono, Task>
where
Task: Copy,
Mono: Monotonic,
{
fn cmp(&self, other: &Self) -> Ordering {
self.instant.cmp(&other.instant)
}
}
impl<Mono, Task> PartialEq for TaskNotReady<Mono, Task>
where
Task: Copy,
Mono: Monotonic,
{
fn eq(&self, other: &Self) -> bool {
self.instant == other.instant
}
}
impl<Mono, Task> PartialOrd for TaskNotReady<Mono, Task>
where
Task: Copy,
Mono: Monotonic,
{
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
pub struct WakerNotReady<Mono>
where
Mono: Monotonic,
{
pub waker: Waker,
pub instant: Mono::Instant,
pub marker: u32,
}
impl<Mono> Eq for WakerNotReady<Mono> where Mono: Monotonic {}
impl<Mono> Ord for WakerNotReady<Mono>
where
Mono: Monotonic,
{
fn cmp(&self, other: &Self) -> Ordering {
self.instant.cmp(&other.instant)
}
}
impl<Mono> PartialEq for WakerNotReady<Mono>
where
Mono: Monotonic,
{
fn eq(&self, other: &Self) -> bool {
self.instant == other.instant
}
}
impl<Mono> PartialOrd for WakerNotReady<Mono>
where
Mono: Monotonic,
{
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}