2023-11-09 00:35:47 +01:00
|
|
|
//! [`Monotonic`] implementations for i.MX RT's GPT peripherals.
|
2023-11-01 12:13:25 +01:00
|
|
|
//!
|
|
|
|
//! # Example
|
|
|
|
//!
|
|
|
|
//! ```
|
|
|
|
//! use rtic_monotonics::imxrt::*;
|
|
|
|
//! use rtic_monotonics::imxrt::Gpt1 as Mono;
|
|
|
|
//!
|
|
|
|
//! fn init() {
|
|
|
|
//! // Obtain ownership of the timer register block
|
|
|
|
//! let gpt1 = unsafe { imxrt_ral::gpt::GPT1::instance() };
|
|
|
|
//!
|
|
|
|
//! // Configure the timer clock source and determine its tick rate
|
|
|
|
//! let timer_tickrate_hz = 1_000_000;
|
|
|
|
//!
|
|
|
|
//! // Generate timer token to ensure correct timer interrupt handler is used
|
|
|
|
//! let token = rtic_monotonics::create_imxrt_gpt1_token!();
|
|
|
|
//!
|
|
|
|
//! // Start the monotonic
|
|
|
|
//! Mono::start(timer_tickrate_hz, gpt1, token);
|
|
|
|
//! }
|
|
|
|
//!
|
|
|
|
//! async fn usage() {
|
|
|
|
//! loop {
|
|
|
|
//! // Use the monotonic
|
|
|
|
//! let timestamp = Mono::now().ticks();
|
|
|
|
//! Mono::delay(100.millis()).await;
|
|
|
|
//! }
|
|
|
|
//! }
|
|
|
|
//! ```
|
|
|
|
|
|
|
|
use crate::{Monotonic, TimeoutError, TimerQueue};
|
|
|
|
use atomic_polyfill::{compiler_fence, AtomicU32, Ordering};
|
|
|
|
pub use fugit::{self, ExtU64};
|
|
|
|
|
|
|
|
use imxrt_ral as ral;
|
|
|
|
|
|
|
|
const TIMER_HZ: u32 = 1_000_000;
|
|
|
|
|
|
|
|
#[doc(hidden)]
|
|
|
|
#[macro_export]
|
|
|
|
macro_rules! __internal_create_imxrt_timer_interrupt {
|
|
|
|
($mono_timer:ident, $timer:ident, $timer_token:ident) => {{
|
|
|
|
#[no_mangle]
|
|
|
|
#[allow(non_snake_case)]
|
|
|
|
unsafe extern "C" fn $timer() {
|
|
|
|
$crate::imxrt::$mono_timer::__tq().on_monotonic_interrupt();
|
|
|
|
}
|
|
|
|
|
|
|
|
pub struct $timer_token;
|
|
|
|
|
|
|
|
unsafe impl $crate::InterruptToken<$crate::imxrt::$mono_timer> for $timer_token {}
|
|
|
|
|
|
|
|
$timer_token
|
|
|
|
}};
|
|
|
|
}
|
|
|
|
|
2023-11-09 00:35:47 +01:00
|
|
|
/// Register the GPT1 interrupt for the monotonic.
|
2023-11-01 12:13:25 +01:00
|
|
|
#[cfg(feature = "imxrt_gpt1")]
|
|
|
|
#[macro_export]
|
|
|
|
macro_rules! create_imxrt_gpt1_token {
|
|
|
|
() => {{
|
|
|
|
$crate::__internal_create_imxrt_timer_interrupt!(Gpt1, GPT1, Gpt1Token)
|
|
|
|
}};
|
|
|
|
}
|
|
|
|
|
2023-11-09 00:35:47 +01:00
|
|
|
/// Register the GPT2 interrupt for the monotonic.
|
2023-11-01 12:13:25 +01:00
|
|
|
#[cfg(feature = "imxrt_gpt2")]
|
|
|
|
#[macro_export]
|
|
|
|
macro_rules! create_imxrt_gpt2_token {
|
|
|
|
() => {{
|
|
|
|
$crate::__internal_create_imxrt_timer_interrupt!(Gpt2, GPT2, Gpt2Token)
|
|
|
|
}};
|
|
|
|
}
|
|
|
|
|
|
|
|
// Credits to the `time-driver` of `embassy-stm32`.
|
|
|
|
//
|
|
|
|
// Clock timekeeping works with something we call "periods", which are time intervals
|
|
|
|
// of 2^31 ticks. The Clock counter value is 32 bits, so one "overflow cycle" is 2 periods.
|
|
|
|
//
|
|
|
|
// A `period` count is maintained in parallel to the Timer hardware `counter`, like this:
|
|
|
|
// - `period` and `counter` start at 0
|
|
|
|
// - `period` is incremented on overflow (at counter value 0)
|
|
|
|
// - `period` is incremented "midway" between overflows (at counter value 0x8000_0000)
|
|
|
|
//
|
|
|
|
// Therefore, when `period` is even, counter is in 0..0x7FFF_FFFF. When odd, counter is in 0x8000_0000..0xFFFF_FFFF
|
|
|
|
// This allows for now() to return the correct value even if it races an overflow.
|
|
|
|
//
|
|
|
|
// To get `now()`, `period` is read first, then `counter` is read. If the counter value matches
|
|
|
|
// the expected range for the `period` parity, we're done. If it doesn't, this means that
|
|
|
|
// a new period start has raced us between reading `period` and `counter`, so we assume the `counter` value
|
|
|
|
// corresponds to the next period.
|
|
|
|
//
|
|
|
|
// `period` is a 32bit integer, so it overflows on 2^32 * 2^31 / 1_000_000 seconds of uptime, which is 292471 years.
|
|
|
|
fn calc_now(period: u32, counter: u32) -> u64 {
|
|
|
|
(u64::from(period) << 31) + u64::from(counter ^ ((period & 1) << 31))
|
|
|
|
}
|
|
|
|
|
|
|
|
macro_rules! make_timer {
|
|
|
|
($mono_name:ident, $timer:ident, $period:ident, $tq:ident$(, doc: ($($doc:tt)*))?) => {
|
2023-11-09 00:35:47 +01:00
|
|
|
/// Timer implementing [`Monotonic`] which runs at 1 MHz.
|
2023-11-01 12:13:25 +01:00
|
|
|
$(
|
|
|
|
#[cfg_attr(docsrs, doc(cfg($($doc)*)))]
|
|
|
|
)?
|
|
|
|
|
|
|
|
pub struct $mono_name;
|
|
|
|
|
|
|
|
use ral::gpt::$timer;
|
|
|
|
|
|
|
|
/// Number of 2^31 periods elapsed since boot.
|
|
|
|
static $period: AtomicU32 = AtomicU32::new(0);
|
|
|
|
static $tq: TimerQueue<$mono_name> = TimerQueue::new();
|
|
|
|
|
|
|
|
impl $mono_name {
|
|
|
|
/// Starts the monotonic timer.
|
2023-11-09 00:35:47 +01:00
|
|
|
///
|
2023-11-01 12:13:25 +01:00
|
|
|
/// - `tick_freq_hz`: The tick frequency of the given timer.
|
|
|
|
/// - `gpt`: The GPT timer register block instance.
|
|
|
|
/// - `_interrupt_token`: Required for correct timer interrupt handling.
|
2023-11-09 00:35:47 +01:00
|
|
|
///
|
2023-11-01 12:13:25 +01:00
|
|
|
/// This method must be called only once.
|
|
|
|
pub fn start(tick_freq_hz: u32, gpt: $timer, _interrupt_token: impl crate::InterruptToken<Self>) {
|
|
|
|
// Find a prescaler that creates our desired tick frequency
|
|
|
|
let previous_prescaler = ral::read_reg!(ral::gpt, gpt, PR, PRESCALER) + 1;
|
|
|
|
let previous_clock_freq = tick_freq_hz * previous_prescaler;
|
|
|
|
assert!((previous_clock_freq % TIMER_HZ) == 0,
|
|
|
|
"Unable to find a fitting prescaler value!\n Input: {}/{}\n Desired: {}",
|
|
|
|
previous_clock_freq, previous_prescaler, TIMER_HZ);
|
|
|
|
let prescaler = previous_clock_freq / TIMER_HZ;
|
|
|
|
assert!(prescaler > 0);
|
|
|
|
assert!(prescaler <= 4096);
|
|
|
|
|
|
|
|
// Disable the timer.
|
|
|
|
ral::modify_reg!(ral::gpt, gpt, CR, EN: 0);
|
|
|
|
// Clear all status registers.
|
|
|
|
ral::write_reg!(ral::gpt, gpt, SR, 0b11_1111);
|
|
|
|
|
|
|
|
// Base configuration
|
|
|
|
ral::modify_reg!(ral::gpt, gpt, CR,
|
|
|
|
ENMOD: 1, // Clear timer state
|
|
|
|
FRR: 1, // Free-Run mode
|
|
|
|
);
|
|
|
|
|
|
|
|
// Reset period
|
|
|
|
$period.store(0, Ordering::Relaxed);
|
|
|
|
|
|
|
|
// Prescaler
|
|
|
|
ral::modify_reg!(ral::gpt, gpt, PR,
|
|
|
|
PRESCALER: (prescaler - 1), // Scale to our desired clock rate
|
|
|
|
);
|
|
|
|
|
|
|
|
// Enable interrupts
|
|
|
|
ral::write_reg!(ral::gpt, gpt, IR,
|
|
|
|
ROVIE: 1, // Rollover interrupt
|
|
|
|
OF1IE: 1, // Timer compare 1 interrupt (for half-periods)
|
|
|
|
OF2IE: 1, // Timer compare 2 interrupt (for dynamic wakeup)
|
|
|
|
);
|
|
|
|
|
|
|
|
// Configure half-period interrupt
|
|
|
|
ral::write_reg!(ral::gpt, gpt, OCR[0], 0x8000_0000);
|
|
|
|
|
|
|
|
// Dynamic interrupt register; for now initialize to zero
|
|
|
|
// so it gets combined with rollover interrupt
|
|
|
|
ral::write_reg!(ral::gpt, gpt, OCR[1], 0x0000_0000);
|
|
|
|
|
|
|
|
// Enable the timer
|
|
|
|
ral::modify_reg!(ral::gpt, gpt, CR, EN: 1);
|
|
|
|
ral::modify_reg!(ral::gpt, gpt, CR,
|
|
|
|
ENMOD: 0, // Keep state when disabled
|
|
|
|
);
|
|
|
|
|
|
|
|
$tq.initialize(Self {});
|
|
|
|
|
|
|
|
// SAFETY: We take full ownership of the peripheral and interrupt vector,
|
|
|
|
// plus we are not using any external shared resources so we won't impact
|
|
|
|
// basepri/source masking based critical sections.
|
|
|
|
unsafe {
|
|
|
|
crate::set_monotonic_prio(ral::NVIC_PRIO_BITS, ral::Interrupt::$timer);
|
|
|
|
cortex_m::peripheral::NVIC::unmask(ral::Interrupt::$timer);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Used to access the underlying timer queue
|
|
|
|
#[doc(hidden)]
|
|
|
|
pub fn __tq() -> &'static TimerQueue<$mono_name> {
|
|
|
|
&$tq
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Delay for some duration of time.
|
|
|
|
#[inline]
|
|
|
|
pub async fn delay(duration: <Self as Monotonic>::Duration) {
|
|
|
|
$tq.delay(duration).await;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Timeout at a specific time.
|
|
|
|
pub async fn timeout_at<F: core::future::Future>(
|
|
|
|
instant: <Self as rtic_time::Monotonic>::Instant,
|
|
|
|
future: F,
|
|
|
|
) -> Result<F::Output, TimeoutError> {
|
|
|
|
$tq.timeout_at(instant, future).await
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Timeout after a specific duration.
|
|
|
|
#[inline]
|
|
|
|
pub async fn timeout_after<F: core::future::Future>(
|
|
|
|
duration: <Self as Monotonic>::Duration,
|
|
|
|
future: F,
|
|
|
|
) -> Result<F::Output, TimeoutError> {
|
|
|
|
$tq.timeout_after(duration, future).await
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Delay to some specific time instant.
|
|
|
|
#[inline]
|
|
|
|
pub async fn delay_until(instant: <Self as Monotonic>::Instant) {
|
|
|
|
$tq.delay_until(instant).await;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(feature = "embedded-hal-async")]
|
|
|
|
impl embedded_hal_async::delay::DelayUs for $mono_name {
|
|
|
|
#[inline]
|
|
|
|
async fn delay_us(&mut self, us: u32) {
|
|
|
|
Self::delay((us as u64).micros()).await;
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
async fn delay_ms(&mut self, ms: u32) {
|
|
|
|
Self::delay((ms as u64).millis()).await;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl embedded_hal::delay::DelayUs for $mono_name {
|
|
|
|
fn delay_us(&mut self, us: u32) {
|
|
|
|
let done = Self::now() + (us as u64).micros();
|
|
|
|
while Self::now() < done {}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl Monotonic for $mono_name {
|
|
|
|
type Instant = fugit::TimerInstantU64<TIMER_HZ>;
|
|
|
|
type Duration = fugit::TimerDurationU64<TIMER_HZ>;
|
|
|
|
|
|
|
|
const ZERO: Self::Instant = Self::Instant::from_ticks(0);
|
|
|
|
|
|
|
|
fn now() -> Self::Instant {
|
|
|
|
let gpt = unsafe{ $timer::instance() };
|
|
|
|
|
|
|
|
// Important: period **must** be read first.
|
|
|
|
let period = $period.load(Ordering::Relaxed);
|
|
|
|
compiler_fence(Ordering::Acquire);
|
|
|
|
let counter = ral::read_reg!(ral::gpt, gpt, CNT);
|
|
|
|
|
|
|
|
Self::Instant::from_ticks(calc_now(period, counter))
|
|
|
|
}
|
|
|
|
|
|
|
|
fn set_compare(instant: Self::Instant) {
|
|
|
|
let gpt = unsafe{ $timer::instance() };
|
|
|
|
|
|
|
|
// Set the timer regardless of whether it is multiple periods in the future,
|
|
|
|
// or even already in the past.
|
|
|
|
// The worst thing that can happen is a spurious wakeup, and with a timer
|
|
|
|
// period of half an hour, this is hardly a problem.
|
|
|
|
|
|
|
|
let ticks = instant.duration_since_epoch().ticks();
|
|
|
|
let ticks_wrapped = ticks as u32;
|
|
|
|
|
|
|
|
ral::write_reg!(ral::gpt, gpt, OCR[1], ticks_wrapped);
|
|
|
|
}
|
|
|
|
|
|
|
|
fn clear_compare_flag() {
|
|
|
|
let gpt = unsafe{ $timer::instance() };
|
|
|
|
ral::write_reg!(ral::gpt, gpt, SR, OF2: 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
fn pend_interrupt() {
|
|
|
|
cortex_m::peripheral::NVIC::pend(ral::Interrupt::$timer);
|
|
|
|
}
|
|
|
|
|
|
|
|
fn on_interrupt() {
|
|
|
|
let gpt = unsafe{ $timer::instance() };
|
|
|
|
|
|
|
|
let (rollover, half_rollover) = ral::read_reg!(ral::gpt, gpt, SR, ROV, OF1);
|
|
|
|
|
|
|
|
if rollover != 0 {
|
|
|
|
$period.fetch_add(1, Ordering::Relaxed);
|
|
|
|
ral::write_reg!(ral::gpt, gpt, SR, ROV: 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
if half_rollover != 0 {
|
|
|
|
$period.fetch_add(1, Ordering::Relaxed);
|
|
|
|
ral::write_reg!(ral::gpt, gpt, SR, OF1: 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(feature = "imxrt_gpt1")]
|
|
|
|
make_timer!(Gpt1, GPT1, GPT1_HALFPERIODS, GPT1_TQ);
|
|
|
|
|
|
|
|
#[cfg(feature = "imxrt_gpt2")]
|
|
|
|
make_timer!(Gpt2, GPT2, GPT2_HALFPERIODS, GPT2_TQ);
|