rtic/macros/src/codegen/post_init.rs

140 lines
4.8 KiB
Rust
Raw Normal View History

use proc_macro2::TokenStream as TokenStream2;
use quote::quote;
use crate::{analyze::Analysis, check::Extra, codegen::util};
/// Generates code that runs after `#[init]` returns
pub fn codegen(
core: u8,
analysis: &Analysis,
extra: &Extra,
) -> (Vec<TokenStream2>, Vec<TokenStream2>) {
let mut const_app = vec![];
let mut stmts = vec![];
// initialize late resources
if let Some(late_resources) = analysis.late_resources.get(&core) {
for name in late_resources {
// if it's live
if analysis.locations.get(name).is_some() {
stmts.push(quote!(#name.as_mut_ptr().write(late.#name);));
}
}
}
if analysis.timer_queues.is_empty() {
// cross-initialization barriers -- notify *other* cores that their resources have been
// initialized
if analysis.initialization_barriers.contains_key(&core) {
let ib = util::init_barrier(core);
const_app.push(quote!(
#[rtfm::export::shared]
static #ib: rtfm::export::Barrier = rtfm::export::Barrier::new();
));
stmts.push(quote!(
#ib.release();
));
}
// then wait until the other cores have initialized *our* resources
for (&initializer, users) in &analysis.initialization_barriers {
if users.contains(&core) {
let ib = util::init_barrier(initializer);
stmts.push(quote!(
#ib.wait();
));
}
}
// cross-spawn barriers: wait until other cores are ready to receive messages
for (&receiver, senders) in &analysis.spawn_barriers {
if senders.get(&core) == Some(&false) {
let sb = util::spawn_barrier(receiver);
stmts.push(quote!(
#sb.wait();
));
}
}
} else {
// if the `schedule` API is used then we'll synchronize all cores to leave the
// `init`-ialization phase at the same time. In this case the rendezvous barrier makes the
// cross-initialization and spawn barriers unnecessary
let m = extra.monotonic();
if analysis.timer_queues.len() == 1 {
// reset the monotonic timer / counter
stmts.push(quote!(
<#m as rtfm::Monotonic>::reset();
));
} else {
// in the multi-core case we need a rendezvous (RV) barrier between *all* the cores that
// use the `schedule` API; otherwise one of the cores could observe the before-reset
// value of the monotonic counter
// (this may be easier to implement with `AtomicU8.fetch_sub` but that API is not
// available on ARMv6-M)
// this core will reset the monotonic counter
const FIRST: u8 = 0;
if core == FIRST {
for &i in analysis.timer_queues.keys() {
let rv = util::rendezvous_ident(i);
const_app.push(quote!(
#[rtfm::export::shared]
static #rv: rtfm::export::Barrier = rtfm::export::Barrier::new();
));
// wait until all the other cores have reached the RV point
if i != FIRST {
stmts.push(quote!(
#rv.wait();
));
}
}
let rv = util::rendezvous_ident(core);
stmts.push(quote!(
// the compiler fences are used to prevent `reset` from being re-ordering wrt to
// the atomic operations -- we don't know if `reset` contains load or store
// operations
core::sync::atomic::compiler_fence(core::sync::atomic::Ordering::SeqCst);
// reset the counter
<#m as rtfm::Monotonic>::reset();
core::sync::atomic::compiler_fence(core::sync::atomic::Ordering::SeqCst);
// now unblock all the other cores
#rv.release();
));
} else {
let rv = util::rendezvous_ident(core);
// let the first core know that we have reached the RV point
stmts.push(quote!(
#rv.release();
));
let rv = util::rendezvous_ident(FIRST);
// wait until the first core has reset the monotonic timer
stmts.push(quote!(
#rv.wait();
));
}
}
}
// enable the interrupts -- this completes the `init`-ialization phase
stmts.push(quote!(rtfm::export::interrupt::enable();));
(const_app, stmts)
}