rtic/examples/async_systick2.rs

267 lines
6.6 KiB
Rust
Raw Normal View History

2020-10-26 14:39:38 +01:00
//! examples/async_task2
#![no_main]
#![no_std]
#![feature(const_fn)]
#![feature(type_alias_impl_trait)]
// use core::cell::Cell;
// use core::cell::UnsafeCell;
use core::future::Future;
use core::mem;
// use core::mem::MaybeUninit;
use core::pin::Pin;
// use core::ptr;
// use core::ptr::NonNull;
// use core::sync::atomic::{AtomicPtr, AtomicU32, Ordering};
use core::task::{Context, Poll, RawWaker, RawWakerVTable, Waker};
use cortex_m_semihosting::{debug, hprintln};
use panic_semihosting as _;
use rtic::Mutex;
#[rtic::app(device = lm3s6965, dispatchers = [SSI0])]
mod app {
use crate::*;
#[resources]
struct Resources {
systick: Systick,
}
#[init]
fn init(cx: init::Context) -> init::LateResources {
2020-10-26 15:50:10 +01:00
hprintln!("init").ok();
2020-10-26 14:39:38 +01:00
foo::spawn().unwrap();
init::LateResources {
systick: Systick {
syst: cx.core.SYST,
state: State::Done,
queue: BinaryHeap::new(),
2020-10-26 15:50:10 +01:00
// waker: None,
2020-10-26 14:39:38 +01:00
},
}
}
#[idle]
fn idle(_: idle::Context) -> ! {
// debug::exit(debug::EXIT_SUCCESS);
loop {
2020-10-26 15:50:10 +01:00
hprintln!("idle").ok();
2020-10-26 14:39:38 +01:00
cortex_m::asm::wfi(); // put the MCU in sleep mode until interrupt occurs
}
}
#[task(resources = [systick])]
fn foo(mut cx: foo::Context) {
// BEGIN BOILERPLATE
type F = impl Future + 'static;
fn create(cx: foo::Context<'static>) -> F {
task(cx)
}
static mut TASK: Task<F> = Task::new();
hprintln!("foo trampoline").ok();
unsafe {
match TASK {
Task::Idle | Task::Done(_) => {
hprintln!("foo spawn task").ok();
TASK.spawn(|| create(mem::transmute(cx)));
}
_ => {}
};
hprintln!("foo trampoline poll").ok();
TASK.poll(|| {
let _ = foo::spawn();
});
match TASK {
Task::Done(ref r) => {
hprintln!("foo trampoline done").ok();
// hprintln!("r = {:?}", mem::transmute::<_, &u32>(r)).ok();
}
_ => {
hprintln!("foo trampoline running").ok();
}
}
}
// END BOILERPLATE
async fn task(mut cx: foo::Context<'static>) {
hprintln!("foo task").ok();
hprintln!("delay long time").ok();
timer_delay(&mut cx.resources.systick, 5000000).await;
hprintln!("foo task resumed").ok();
hprintln!("delay short time").ok();
timer_delay(&mut cx.resources.systick, 1000000).await;
hprintln!("foo task resumed").ok();
}
}
2020-10-26 15:50:10 +01:00
// RTIC task bound to the HW SysTick interrupt
2020-10-26 14:39:38 +01:00
#[task(binds = SysTick, resources = [systick], priority = 2)]
fn systic(mut cx: systic::Context) {
hprintln!("systic interrupt").ok();
cx.resources.systick.lock(|s| {
s.syst.disable_interrupt();
s.state = State::Done;
2020-10-26 15:50:10 +01:00
s.queue.pop().map(|w| w.waker.wake());
2020-10-26 15:56:25 +01:00
if let Some(w) = s.queue.peek() {
s.syst.set_reload(w.time);
} else {
s.syst.disable_interrupt();
}
2020-10-26 14:39:38 +01:00
});
}
}
//=============
// Waker
static WAKER_VTABLE: RawWakerVTable =
RawWakerVTable::new(waker_clone, waker_wake, waker_wake, waker_drop);
unsafe fn waker_clone(p: *const ()) -> RawWaker {
RawWaker::new(p, &WAKER_VTABLE)
}
unsafe fn waker_wake(p: *const ()) {
let f: fn() = mem::transmute(p);
f();
}
unsafe fn waker_drop(_: *const ()) {
// nop
}
//============
// Task
enum Task<F: Future + 'static> {
Idle,
Running(F),
Done(F::Output),
}
impl<F: Future + 'static> Task<F> {
const fn new() -> Self {
Self::Idle
}
fn spawn(&mut self, future: impl FnOnce() -> F) {
*self = Task::Running(future());
}
unsafe fn poll(&mut self, wake: fn()) {
match self {
Task::Idle => {}
Task::Running(future) => {
let future = Pin::new_unchecked(future);
let waker_data: *const () = mem::transmute(wake);
let waker = Waker::from_raw(RawWaker::new(waker_data, &WAKER_VTABLE));
let mut cx = Context::from_waker(&waker);
match future.poll(&mut cx) {
Poll::Ready(r) => *self = Task::Done(r),
Poll::Pending => {}
};
}
Task::Done(_) => {}
}
}
}
//=============
// Timer
// Later we want a proper queue
//use core::cmp::{Ord, Ordering, PartialOrd};
use core::cmp::Ordering;
use heapless::binary_heap::{BinaryHeap, Max};
2020-10-26 15:56:25 +01:00
use heapless::consts::U8;
2020-10-26 14:39:38 +01:00
pub enum State {
Started,
Done,
}
struct Timeout {
time: u32,
2020-10-26 15:50:10 +01:00
waker: Waker,
2020-10-26 14:39:38 +01:00
}
impl Ord for Timeout {
fn cmp(&self, other: &Self) -> Ordering {
self.time.cmp(&other.time)
}
}
impl PartialOrd for Timeout {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(&other))
}
}
impl PartialEq for Timeout {
fn eq(&self, other: &Self) -> bool {
self.time == other.time
}
}
impl Eq for Timeout {}
pub struct Systick {
syst: cortex_m::peripheral::SYST,
state: State,
queue: BinaryHeap<Timeout, U8, Max>,
2020-10-26 15:50:10 +01:00
// waker: Option<Waker>,
2020-10-26 14:39:38 +01:00
}
//=============
// Timer
// Later we want a proper queue
pub struct Timer<'a, T: Mutex<T = Systick>> {
2020-10-26 15:50:10 +01:00
request: Option<u32>,
2020-10-26 14:39:38 +01:00
systick: &'a mut T,
}
impl<'a, T: Mutex<T = Systick>> Future for Timer<'a, T> {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
2020-10-26 15:50:10 +01:00
let Self { request, systick } = &mut *self;
2020-10-26 14:39:38 +01:00
systick.lock(|s| {
2020-10-26 15:50:10 +01:00
// enqueue a new request
request.take().map(|t| {
s.syst.set_reload(t);
2020-10-26 14:39:38 +01:00
s.syst.enable_counter();
s.syst.enable_interrupt();
s.state = State::Started;
2020-10-26 15:50:10 +01:00
s.queue.push(Timeout {
time: t,
waker: cx.waker().clone(),
});
});
2020-10-26 14:39:38 +01:00
match s.state {
State::Done => Poll::Ready(()),
State::Started => {
2020-10-26 15:50:10 +01:00
// s.waker = Some(cx.waker().clone());
2020-10-26 14:39:38 +01:00
Poll::Pending
}
}
})
}
}
fn timer_delay<'a, T: Mutex<T = Systick>>(systick: &'a mut T, t: u32) -> Timer<'a, T> {
hprintln!("timer_delay {}", t);
Timer {
2020-10-26 15:50:10 +01:00
request: Some(t),
2020-10-26 14:39:38 +01:00
systick,
}
}