rtic/1/api/heapless/pool/index.html

211 lines
20 KiB
HTML
Raw Permalink Normal View History

<!DOCTYPE html><html lang="en"><head><meta charset="utf-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><meta name="generator" content="rustdoc"><meta name="description" content="A heap-less, interrupt-safe, lock-free memory pool (*)"><title>heapless::pool - Rust</title><script>if(window.location.protocol!=="file:")document.head.insertAdjacentHTML("beforeend","SourceSerif4-Regular-46f98efaafac5295.ttf.woff2,FiraSans-Regular-018c141bf0843ffd.woff2,FiraSans-Medium-8f9a781e4970d388.woff2,SourceCodePro-Regular-562dcc5011b6de7d.ttf.woff2,SourceCodePro-Semibold-d899c5a5c4aeb14a.ttf.woff2".split(",").map(f=>`<link rel="preload" as="font" type="font/woff2" crossorigin href="../../static.files/${f}">`).join(""))</script><link rel="stylesheet" href="../../static.files/normalize-76eba96aa4d2e634.css"><link rel="stylesheet" href="../../static.files/rustdoc-b0742ba02757f159.css"><meta name="rustdoc-vars" data-root-path="../../" data-static-root-path="../../static.files/" data-current-crate="heapless" data-themes="" data-resource-suffix="" data-rustdoc-version="1.83.0 (90b35a623 2024-11-26)" data-channel="1.83.0" data-search-js="search-f0d225181b97f9a4.js" data-settings-js="settings-805db61a62df4bd2.js" ><script src="../../static.files/storage-1d39b6787ed640ff.js"></script><script defer src="../sidebar-items.js"></script><script defer src="../../static.files/main-f070b9041d14864c.js"></script><noscript><link rel="stylesheet" href="../../static.files/noscript-0111fcff984fae8f.css"></noscript><link rel="alternate icon" type="image/png" href="../../static.files/favicon-32x32-422f7d1d52889060.png"><link rel="icon" type="image/svg+xml" href="../../static.files/favicon-2c020d218678b618.svg"></head><body class="rustdoc mod"><!--[if lte IE 11]><div class="warning">This old browser is unsupported and will most likely display funky things.</div><![endif]--><nav class="mobile-topbar"><button class="sidebar-menu-toggle" title="show sidebar"></button></nav><nav class="sidebar"><div class="sidebar-crate"><h2><a href="../../heapless/index.html">heapless</a><span class="version">0.7.17</span></h2></div><div class="sidebar-elems"><section id="rustdoc-toc"><h2 class="location"><a href="#">Module pool</a></h2><h3><a href="#">Sections</a></h3><ul class="block top-toc"><li><a href="#examples" title="Examples">Examples</a></li><li><a href="#portability" title="Portability">Portability</a></li><li><a href="#soundness" title="Soundness">Soundness</a></li><li><a href="#x86_64-support--limitations" title="x86_64 support / limitations">x86_64 support / limitations</a><ul><li><a href="#x86_64-limitations" title="x86_64 Limitations">x86_64 Limitations</a></li></ul></li><li><a href="#references" title="References">References</a></li></ul><h3><a href="#modules">Module Items</a></h3><ul class="block"><li><a href="#modules" title="Modules">Modules</a></li><li><a href="#structs" title="Structs">Structs</a></li><li><a href="#enums" title="Enums">Enums</a></li></ul></section><div id="rustdoc-modnav"><h2 class="in-crate"><a href="../index.html">In crate heapless</a></h2></div></div></nav><div class="sidebar-resizer"></div><main><div class="width-limiter"><rustdoc-search></rustdoc-search><section id="main-content" class="content"><div class="main-heading"><span class="rustdoc-breadcrumbs"><a href="../index.html">heapless</a></span><h1>Module <span>pool</span><button id="copy-path" title="Copy item path to clipboard">Copy item path</button></h1><rustdoc-toolbar></rustdoc-toolbar><span class="sub-heading"><a class="src" href="../../src/heapless/pool/mod.rs.html#1-693">source</a> </span></div><details class="toggle top-doc" open><summary class="hideme"><span>Expand description</span></summary><div class="docblock"><p>A heap-less, interrupt-safe, lock-free memory pool (*)</p>
<p>NOTE: This module is not available on targets that do <em>not</em> support CAS operations and are not
emulated by the <a href="https://crates.io/crates/atomic-polyfill"><code>atomic_polyfill</code></a> crate (e.g.,
MSP430).</p>
<p>(*) Currently, the implementation is only lock-free <em>and</em> <code>Sync</code> on ARMv6, ARMv7-{A,R,M} &amp; ARMv8-M
devices</p>
<h2 id="examples"><a class="doc-anchor" href="#examples">§</a>Examples</h2>
<p>The most common way of using this pool is as a global singleton; the singleton mode gives you
automatic deallocation of memory blocks on <code>drop</code>.</p>
<div class="example-wrap ignore"><a href="#" class="tooltip" title="This example is not tested"></a><pre class="rust rust-example-rendered"><code><span class="attr">#![no_main]
#![no_std]
</span><span class="kw">use </span>cortex_m_rt::{entry, exception};
<span class="kw">use </span>heapless::{
pool,
pool::singleton::{Box, Pool},
};
<span class="comment">// instantiate a memory pool of `[u8; 128]` blocks as a global singleton
</span><span class="macro">pool!</span>(
<span class="comment">// attributes can be used here
// #[link_section = ".ccram.A"]
</span>A: [u8; <span class="number">128</span>]
);
<span class="attr">#[entry]
</span><span class="kw">fn </span>main() -&gt; ! {
<span class="kw">static </span><span class="kw-2">mut </span>MEMORY: [u8; <span class="number">1024</span>] = [<span class="number">0</span>; <span class="number">1024</span>];
<span class="comment">// increase the capacity of the pool by ~8 blocks
</span>A::grow(MEMORY);
<span class="comment">// claim a block of memory
// note that the type is `Box&lt;A&gt;`, and not `Box&lt;[u8; 128]&gt;`
// `A` is the "name" of the pool
</span><span class="kw">let </span>x: Box&lt;A, <span class="kw">_</span>&gt; = A::alloc().unwrap();
<span class="kw">loop </span>{
<span class="comment">// .. do stuff with `x` ..
</span>}
}
<span class="attr">#[exception]
</span><span class="kw">fn </span>SysTick() {
<span class="comment">// claim a block of memory
</span><span class="kw">let </span>y = A::alloc().unwrap();
<span class="comment">// .. do stuff with `y` ..
// return the memory block to the pool
</span>drop(y);
}</code></pre></div>
<h2 id="portability"><a class="doc-anchor" href="#portability">§</a>Portability</h2>
<p>This pool internally uses a Treiber stack which is known to be susceptible to the ABA problem.
The only counter measure against the ABA problem that this implementation currently takes is
relying on LL/SC (Link-local / Store-conditional) instructions being used to implement CAS loops
on the target architecture (see section on <a href="#soundness">Soundness</a> for more information). For
this reason, <code>Pool</code> only implements <code>Sync</code> when compiling for some ARM cores.</p>
<p>This module requires CAS atomic instructions which are not available on all architectures (e.g.
ARMv6-M (<code>thumbv6m-none-eabi</code>) and MSP430 (<code>msp430-none-elf</code>)). These atomics can be emulated
however with <a href="https://crates.io/crates/atomic-polyfill"><code>atomic_polyfill</code></a>, which is enabled
with the <code>cas</code> feature and is enabled by default for <code>thumbv6m-none-eabi</code> and <code>riscv32</code> targets.
MSP430 is currently not supported by
<a href="https://crates.io/crates/atomic-polyfill"><code>atomic_polyfill</code></a>.</p>
<h2 id="soundness"><a class="doc-anchor" href="#soundness">§</a>Soundness</h2>
<p>This pool uses a Treiber stack to keep a list of free memory blocks (nodes). Each of these
nodes has a pointer to the next node. To claim a memory block we simply pop a node from the
top of the stack and use it as a memory block. The pop operation consists of swapping the
current head (top) node with the node below it. The Rust code for the <code>pop</code> operation is shown
below:</p>
<div class="example-wrap ignore"><a href="#" class="tooltip" title="This example is not tested"></a><pre class="rust rust-example-rendered"><code><span class="kw">fn </span>pop(<span class="kw-2">&amp;</span><span class="self">self</span>) -&gt; <span class="prelude-ty">Option</span>&lt;NonNull&lt;Node&lt;T&gt;&gt;&gt; {
<span class="kw">let </span>fetch_order = ..;
<span class="kw">let </span>set_order = ..;
<span class="comment">// `self.head` has type `AtomicPtr&lt;Node&lt;T&gt;&gt;`
// where `struct Node&lt;T&gt; { next: AtomicPtr&lt;Node&lt;T&gt;&gt;, data: UnsafeCell&lt;T&gt; }`
</span><span class="kw">let </span><span class="kw-2">mut </span>head = <span class="self">self</span>.head.load(fetch_order);
<span class="kw">loop </span>{
<span class="kw">if let </span><span class="prelude-val">Some</span>(nn_head) = NonNull::new(head) {
<span class="kw">let </span>next = <span class="kw">unsafe </span>{ (<span class="kw-2">*</span>head).next.load(Ordering::Relaxed) };
<span class="comment">// &lt;~ preempted
</span><span class="kw">match </span><span class="self">self
</span>.head
.compare_exchange_weak(head, next, set_order, fetch_order)
{
<span class="prelude-val">Ok</span>(<span class="kw">_</span>) =&gt; <span class="kw">break </span><span class="prelude-val">Some</span>(nn_head),
<span class="comment">// head was changed by some interrupt handler / thread
</span><span class="prelude-val">Err</span>(new_head) =&gt; head = new_head,
}
} <span class="kw">else </span>{
<span class="comment">// stack is observed as empty
</span><span class="kw">break </span><span class="prelude-val">None</span>;
}
}
}</code></pre></div>
<p>In general, the <code>pop</code> operation is susceptible to the ABA problem. If this operation gets
preempted by some interrupt handler somewhere between the <code>head.load</code> and the
<code>compare_and_exchange_weak</code>, and that handler modifies the stack in such a way that the head
(top) of the stack remains unchanged then resuming the <code>pop</code> operation will corrupt the stack.</p>
<p>An example: imagine we are doing on <code>pop</code> on stack that contains these nodes: <code>A -&gt; B -&gt; C</code>,
<code>A</code> is the head (top), <code>B</code> is next to <code>A</code> and <code>C</code> is next to <code>B</code>. The <code>pop</code> operation will do a
<code>CAS(&amp;self.head, A, B)</code> operation to atomically change the head to <code>B</code> iff it currently is <code>A</code>.
Now, lets say a handler preempts the <code>pop</code> operation before the <code>CAS</code> operation starts and it
<code>pop</code>s the stack twice and then <code>push</code>es back the <code>A</code> node; now the state of the stack is <code>A -&gt; C</code>. When the original <code>pop</code> operation is resumed it will succeed in doing the <code>CAS</code> operation
setting <code>B</code> as the head of the stack. However, <code>B</code> was used by the handler as a memory block and
no longer is a valid free node. As a result the stack, and thus the allocator, is in a invalid
state.</p>
<p>However, not all is lost because ARM devices use LL/SC (Link-local / Store-conditional)
operations to implement CAS loops. Lets look at the actual disassembly of <code>pop</code> for the ARM
Cortex-M.</p>
<div class="example-wrap"><pre class="language-text"><code>08000130 &lt;&lt;heapless::pool::Pool&lt;T&gt;&gt;::pop&gt;:
8000130: 6802 ldr r2, [r0, #0]
8000132: e00c b.n 800014e &lt;&lt;heapless::pool::Pool&lt;T&gt;&gt;::pop+0x1e&gt;
8000134: 4611 mov r1, r2
8000136: f8d2 c000 ldr.w ip, [r2]
800013a: e850 2f00 ldrex r2, [r0]
800013e: 428a cmp r2, r1
8000140: d103 bne.n 800014a &lt;&lt;heapless::pool::Pool&lt;T&gt;&gt;::pop+0x1a&gt;
8000142: e840 c300 strex r3, ip, [r0]
8000146: b913 cbnz r3, 800014e &lt;&lt;heapless::pool::Pool&lt;T&gt;&gt;::pop+0x1e&gt;
8000148: e004 b.n 8000154 &lt;&lt;heapless::pool::Pool&lt;T&gt;&gt;::pop+0x24&gt;
800014a: f3bf 8f2f clrex
800014e: 2a00 cmp r2, #0
8000150: d1f0 bne.n 8000134 &lt;&lt;heapless::pool::Pool&lt;T&gt;&gt;::pop+0x4&gt;
8000152: 2100 movs r1, #0
8000154: 4608 mov r0, r1
8000156: 4770 bx lr</code></pre></div>
<p>LDREX (“load exclusive”) is the LL instruction, and STREX (“store exclusive”) is the SC
instruction (see <a href="#references">1</a>). On the Cortex-M, STREX will always fail if the processor
takes an exception between it and its corresponding LDREX operation (see <a href="#references">2</a>). If
STREX fails then the CAS loop is retried (see instruction @ <code>0x8000146</code>). On single core
systems, preemption is required to run into the ABA problem and on Cortex-M devices preemption
always involves taking an exception. Thus the underlying LL/SC operations prevent the ABA
problem on Cortex-M.</p>
<p>In the case of multi-core systems if any other core successfully does a STREX op on the head
while the current core is somewhere between LDREX and STREX then the current core will fail its
STREX operation.</p>
<h2 id="x86_64-support--limitations"><a class="doc-anchor" href="#x86_64-support--limitations">§</a>x86_64 support / limitations</h2>
<p><em>NOTE</em> <code>Pool</code> is only <code>Sync</code> on <code>x86_64</code> and <code>x86</code> (<code>i686</code>) if the Cargo feature “x86-sync-pool”
is enabled</p>
<p>x86_64 support is a gamble. Yes, a gamble. Do you feel lucky enough to use <code>Pool</code> on x86_64?</p>
<p>As its not possible to implement <em>ideal</em> LL/SC semantics (*) on x86_64 the architecture is
susceptible to the ABA problem described above. To <em>reduce the chances</em> of ABA occurring in
practice we use version tags (keyword: IBM ABA-prevention tags). Again, this approach does
<em>not</em> fix / prevent / avoid the ABA problem; it only reduces the chance of it occurring in
practice but the chances of it occurring are not reduced to zero.</p>
<p>How we have implemented version tags: instead of using an <code>AtomicPtr</code> to link the stack <code>Node</code>s
we use an <code>AtomicUsize</code> where the 64-bit <code>usize</code> is always comprised of a monotonically
increasing 32-bit tag (higher bits) and a 32-bit signed address offset. The address of a node is
computed by adding the 32-bit offset to an “anchor” address (the address of a static variable
that lives somewhere in the <code>.bss</code> linker section). The tag is increased every time a node is
popped (removed) from the stack.</p>
<p>To see how version tags can prevent ABA consider the example from the previous section. Lets
start with a stack in this state: <code>(~A, 0) -&gt; (~B, 1) -&gt; (~C, 2)</code>, where <code>~A</code> represents the
address of node A as a 32-bit offset from the “anchor” and the second tuple element (e.g. <code>0</code>)
indicates the version of the node. For simplicity, assume a single core system: thread T1 is
performing <code>pop</code> and before <code>CAS(&amp;self.head, (~A, 0), (~B, 1))</code> is executed a context switch
occurs and the core resumes T2. T2 pops the stack twice and pushes A back into the stack;
because the <code>pop</code> operation increases the version the stack ends in the following state: `(~A,</p>
<ol>
<li>-&gt; (~C, 2)<code>. Now if T1 is resumed the CAS operation will fail because </code>self.head<code>is</code>(~A,
1)<code>and not</code>(~A, 0)`.</li>
</ol>
<p>When can version tags fail to prevent ABA? Using the previous example: if T2 performs a <code>push</code>
followed by a <code>pop</code> <code>(1 &lt;&lt; 32) - 1</code> times before doing its original <code>pop</code> - <code>pop</code> - <code>push</code>
operation then ABA will occur because the version tag of node <code>A</code> will wraparound to its
original value of <code>0</code> and the CAS operation in T1 will succeed and corrupt the stack.</p>
<p>It does seem unlikely that (1) a thread will perform the above operation and (2) that the above
operation will complete within one time slice, assuming time sliced threads. If you have thread
priorities then the above operation could occur during the lifetime of many high priorities
threads if T1 is running at low priority.</p>
<p>Other implementations of version tags use more than 32 bits in their tags (e.g. “Scalable
Lock-Free Dynamic Memory Allocation” uses 42-bit tags in its super blocks). In theory, one could
use double-word CAS on x86_64 to pack a 64-bit tag and a 64-bit pointer in a double-word but
this CAS operation is not exposed in the standard library (and I think its not available on
older x86_64 processors?)</p>
<p>(*) Apparently one can emulate proper LL/SC semantics on x86_64 using hazard pointers (?)
the technique appears to be documented in “ABA Prevention Using Single-Word Instructions”, which
is not public AFAICT but hazard pointers require Thread Local Storage (TLS), which is a
non-starter for a <code>no_std</code> library like <code>heapless</code>.</p>
<h3 id="x86_64-limitations"><a class="doc-anchor" href="#x86_64-limitations">§</a>x86_64 Limitations</h3>
<p><em>NOTE</em> this limitation does not apply to <code>x86</code> (32-bit address space). If you run into this
issue, on an x86_64 processor try running your code compiled for <code>x86</code>, e.g. <code>cargo run --target i686-unknown-linux-musl</code></p>
<p>Because stack nodes must be located within +- 2 GB of the hidden <code>ANCHOR</code> variable, which
lives in the <code>.bss</code> section, <code>Pool</code> may not be able to manage static references created using
<code>Box::leak</code> these heap allocated chunks of memory may live in a very different address space.
When the <code>Pool</code> is unable to manage a node because of its address it will simply discard it:
<code>Pool::grow*</code> methods return the number of new memory blocks added to the pool; if these methods
return <code>0</code> it means the <code>Pool</code> is unable to manage the memory given to them.</p>
<h2 id="references"><a class="doc-anchor" href="#references">§</a>References</h2>
<ol>
<li><a href="http://infocenter.arm.com/help/topic/com.arm.doc.dui0552a/DUI0552A_cortex_m3_dgug.pdf">Cortex-M3 Devices Generic User Guide (DUI 0552A)</a>, Section 2.2.7 “Synchronization
primitives”</li>
</ol>
<ol start="2">
<li><a href="https://static.docs.arm.com/ddi0403/eb/DDI0403E_B_armv7m_arm.pdf">ARMv7-M Architecture Reference Manual (DDI 0403E.b)</a>, Section A3.4 “Synchronization and
semaphores”</li>
</ol>
<ol start="3">
<li>
<p>“Scalable Lock-Free Dynamic Memory Allocation” Michael, Maged M.</p>
</li>
<li>
<p>“Hazard pointers: Safe memory reclamation for lock-free objects.” Michael, Maged M.</p>
</li>
</ol>
</div></details><h2 id="modules" class="section-header">Modules<a href="#modules" class="anchor">§</a></h2><ul class="item-table"><li><div class="item-name"><a class="mod" href="singleton/index.html" title="mod heapless::pool::singleton">singleton</a></div><div class="desc docblock-short"><code>Pool</code> as a global singleton</div></li></ul><h2 id="structs" class="section-header">Structs<a href="#structs" class="anchor">§</a></h2><ul class="item-table"><li><div class="item-name"><a class="struct" href="struct.Box.html" title="struct heapless::pool::Box">Box</a></div><div class="desc docblock-short">A memory block</div></li><li><div class="item-name"><a class="struct" href="struct.Node.html" title="struct heapless::pool::Node">Node</a></div><div class="desc docblock-short">Unfortunate implementation detail required to use the
<a href="struct.Pool.html#method.grow_exact"><code>Pool.grow_exact</code></a> method</div></li><li><div class="item-name"><a class="struct" href="struct.Pool.html" title="struct heapless::pool::Pool">Pool</a></div><div class="desc docblock-short">A lock-free memory pool</div></li></ul><h2 id="enums" class="section-header">Enums<a href="#enums" class="anchor">§</a></h2><ul class="item-table"><li><div class="item-name"><a class="enum" href="enum.Init.html" title="enum heapless::pool::Init">Init</a></div><div class="desc docblock-short">Initialized type state</div></li><li><div class="item-name"><a class="enum" href="enum.Uninit.html" title="enum heapless::pool::Uninit">Uninit</a></div><div class="desc docblock-short">Uninitialized type state</div></li></ul></section></div></main></body></html>